(4x−24)⋅(x+7)=0. (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (4x−24)⋅(x+7)=0.

    Решение

    Вы ввели [src]
    (4*x - 24)*(x + 7) = 0
    (x+7)(4x24)=0\left(x + 7\right) \left(4 x - 24\right) = 0
    Подробное решение
    Раскроем выражение в уравнении
    (x+7)(4x24)=0\left(x + 7\right) \left(4 x - 24\right) = 0
    Получаем квадратное уравнение
    4x2+4x168=04 x^{2} + 4 x - 168 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=4a = 4
    b=4b = 4
    c=168c = -168
    , то
    D = b^2 - 4 * a * c = 

    (4)^2 - 4 * (4) * (-168) = 2704

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=6x_{1} = 6
    x2=7x_{2} = -7
    Быстрый ответ [src]
    x1 = -7
    x1=7x_{1} = -7
    x2 = 6
    x2=6x_{2} = 6
    Численный ответ [src]
    x1 = 6.0
    x2 = -7.0