2/u = Const - log(x) (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 2/u = Const - log(x)

    Решение

    Вы ввели [src]
    2             
    - = c - log(x)
    u             
    $$\frac{2}{u} = c - \log{\left(x \right)}$$
    Подробное решение
    Дано уравнение
    $$\frac{2}{u} = c - \log{\left(x \right)}$$
    Перенесём правую часть уравнения левую часть уравнения со знаком минус
    $$\log{\left(x \right)} = c - \frac{2}{u}$$
    Это уравнение вида:
    log(v)=p

    По определению log
    v=e^p

    тогда
    $$x = e^{\frac{c - \frac{2}{u}}{1}}$$
    упрощаем
    $$x = e^{c - \frac{2}{u}}$$
    График
    Быстрый ответ [src]
                                                                         2*re(u)        im(u)*im(c*u)     re(u)*re(c*u)             2*re(u)        im(u)*im(c*u)     re(u)*re(c*u)                                                          
                                                                   - --------------- + --------------- + ---------------      - --------------- + --------------- + ---------------                                                         
                                                                       2        2        2        2        2        2             2        2        2        2        2        2                                                            
            /    2*im(u)        im(c*u)*re(u)     im(u)*re(c*u) \    im (u) + re (u)   im (u) + re (u)   im (u) + re (u)        im (u) + re (u)   im (u) + re (u)   im (u) + re (u)    /    2*im(u)        im(c*u)*re(u)     im(u)*re(c*u) \
    x1 = cos|--------------- + --------------- - ---------------|*e                                                      + I*e                                                     *sin|--------------- + --------------- - ---------------|
            |  2        2        2        2        2        2   |                                                                                                                      |  2        2        2        2        2        2   |
            \im (u) + re (u)   im (u) + re (u)   im (u) + re (u)/                                                                                                                      \im (u) + re (u)   im (u) + re (u)   im (u) + re (u)/
    $$x_{1} = i e^{\frac{\operatorname{re}{\left(u\right)} \operatorname{re}{\left(c u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} - \frac{2 \operatorname{re}{\left(u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} + \frac{\operatorname{im}{\left(u\right)} \operatorname{im}{\left(c u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}}} \sin{\left(\frac{\operatorname{re}{\left(u\right)} \operatorname{im}{\left(c u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} - \frac{\operatorname{re}{\left(c u\right)} \operatorname{im}{\left(u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} + \frac{2 \operatorname{im}{\left(u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} \right)} + e^{\frac{\operatorname{re}{\left(u\right)} \operatorname{re}{\left(c u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} - \frac{2 \operatorname{re}{\left(u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} + \frac{\operatorname{im}{\left(u\right)} \operatorname{im}{\left(c u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}}} \cos{\left(\frac{\operatorname{re}{\left(u\right)} \operatorname{im}{\left(c u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} - \frac{\operatorname{re}{\left(c u\right)} \operatorname{im}{\left(u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} + \frac{2 \operatorname{im}{\left(u\right)}}{\left(\operatorname{re}{\left(u\right)}\right)^{2} + \left(\operatorname{im}{\left(u\right)}\right)^{2}} \right)}$$