2x^2+3x+8=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 2x^2+3x+8=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 2 a = 2 a = 2 b = 3 b = 3 b = 3 c = 8 c = 8 c = 8 , тоD = b^2 - 4 * a * c = (3)^2 - 4 * (2) * (8) = -55 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = − 3 4 + 55 i 4 x_{1} = - \frac{3}{4} + \frac{\sqrt{55} i}{4} x 1 = − 4 3 + 4 55 i Упростить x 2 = − 3 4 − 55 i 4 x_{2} = - \frac{3}{4} - \frac{\sqrt{55} i}{4} x 2 = − 4 3 − 4 55 i Упростить
График
-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 0 20
____
3 I*\/ 55
x1 = - - - --------
4 4 x 1 = − 3 4 − 55 i 4 x_{1} = - \frac{3}{4} - \frac{\sqrt{55} i}{4} x 1 = − 4 3 − 4 55 i ____
3 I*\/ 55
x2 = - - + --------
4 4 x 2 = − 3 4 + 55 i 4 x_{2} = - \frac{3}{4} + \frac{\sqrt{55} i}{4} x 2 = − 4 3 + 4 55 i
Сумма и произведение корней
[src] ____ ____
3 I*\/ 55 3 I*\/ 55
0 + - - - -------- + - - + --------
4 4 4 4 ( 0 − ( 3 4 + 55 i 4 ) ) − ( 3 4 − 55 i 4 ) \left(0 - \left(\frac{3}{4} + \frac{\sqrt{55} i}{4}\right)\right) - \left(\frac{3}{4} - \frac{\sqrt{55} i}{4}\right) ( 0 − ( 4 3 + 4 55 i ) ) − ( 4 3 − 4 55 i ) / ____\ / ____\
| 3 I*\/ 55 | | 3 I*\/ 55 |
1*|- - - --------|*|- - + --------|
\ 4 4 / \ 4 4 / 1 ( − 3 4 − 55 i 4 ) ( − 3 4 + 55 i 4 ) 1 \left(- \frac{3}{4} - \frac{\sqrt{55} i}{4}\right) \left(- \frac{3}{4} + \frac{\sqrt{55} i}{4}\right) 1 ( − 4 3 − 4 55 i ) ( − 4 3 + 4 55 i )
Теорема Виета
перепишем уравнение2 x 2 + 3 x + 8 = 0 2 x^{2} + 3 x + 8 = 0 2 x 2 + 3 x + 8 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 3 x 2 + 4 = 0 x^{2} + \frac{3 x}{2} + 4 = 0 x 2 + 2 3 x + 4 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 3 2 p = \frac{3}{2} p = 2 3 q = c a q = \frac{c}{a} q = a c q = 4 q = 4 q = 4 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 3 2 x_{1} + x_{2} = - \frac{3}{2} x 1 + x 2 = − 2 3 x 1 x 2 = 4 x_{1} x_{2} = 4 x 1 x 2 = 4 x1 = -0.75 - 1.85404962177392*i x2 = -0.75 + 1.85404962177392*i