pi*re(n) pi*I*im(n)
x1 = ------------------- - -------------------
/ 2 2 \ / 2 2 \
2*\im (n) + re (n)/ 2*\im (n) + re (n)/$$x_{1} = \frac{\pi \operatorname{re}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)} - \frac{i \pi \operatorname{im}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)}$$
3*pi*re(n) 3*pi*I*im(n)
x2 = ------------------- - -------------------
/ 2 2 \ / 2 2 \
2*\im (n) + re (n)/ 2*\im (n) + re (n)/$$x_{2} = \frac{3 \pi \operatorname{re}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)} - \frac{3 i \pi \operatorname{im}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)}$$
Сумма и произведение корней
[src] pi*re(n) pi*I*im(n) 3*pi*re(n) 3*pi*I*im(n)
------------------- - ------------------- + ------------------- - -------------------
/ 2 2 \ / 2 2 \ / 2 2 \ / 2 2 \
2*\im (n) + re (n)/ 2*\im (n) + re (n)/ 2*\im (n) + re (n)/ 2*\im (n) + re (n)/
$$\left(\frac{\pi \operatorname{re}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)} - \frac{i \pi \operatorname{im}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)}\right) + \left(\frac{3 \pi \operatorname{re}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)} - \frac{3 i \pi \operatorname{im}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)}\right)$$
2*pi*re(n) 2*pi*I*im(n)
--------------- - ---------------
2 2 2 2
im (n) + re (n) im (n) + re (n)
$$\frac{2 \pi \operatorname{re}{\left(n\right)}}{\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}} - \frac{2 i \pi \operatorname{im}{\left(n\right)}}{\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}}$$
/ pi*re(n) pi*I*im(n) \ / 3*pi*re(n) 3*pi*I*im(n) \
|------------------- - -------------------|*|------------------- - -------------------|
| / 2 2 \ / 2 2 \| | / 2 2 \ / 2 2 \|
\2*\im (n) + re (n)/ 2*\im (n) + re (n)// \2*\im (n) + re (n)/ 2*\im (n) + re (n)//
$$\left(\frac{\pi \operatorname{re}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)} - \frac{i \pi \operatorname{im}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)}\right) \left(\frac{3 \pi \operatorname{re}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)} - \frac{3 i \pi \operatorname{im}{\left(n\right)}}{2 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)}\right)$$
2 2
3*pi *(-I*im(n) + re(n))
-------------------------
2
/ 2 2 \
4*\im (n) + re (n)/ $$\frac{3 \pi^{2} \left(\operatorname{re}{\left(n\right)} - i \operatorname{im}{\left(n\right)}\right)^{2}}{4 \left(\left(\operatorname{re}{\left(n\right)}\right)^{2} + \left(\operatorname{im}{\left(n\right)}\right)^{2}\right)^{2}}$$