cos(x^2)=2 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: cos(x^2)=2

    Решение

    Вы ввели [src]
       / 2\    
    cos\x / = 2
    $$\cos{\left(x^{2} \right)} = 2$$
    Подробное решение
    Дано уравнение
    $$\cos{\left(x^{2} \right)} = 2$$
    преобразуем
    $$\cos{\left(x^{2} \right)} - 2 = 0$$
    $$\cos{\left(x^{2} \right)} - 2 = 0$$
    Сделаем замену
    $$w = \cos{\left(x^{2} \right)}$$
    Переносим свободные слагаемые (без w)
    из левой части в правую, получим:
    $$w = 2$$
    Получим ответ: w = 2
    делаем обратную замену
    $$\cos{\left(x^{2} \right)} = w$$
    подставляем w:
    График
    Быстрый ответ [src]
                                        /    /im(acos(2))\\                                  /    /im(acos(2))\\
              ______________________    |atan|-----------||        ______________________    |atan|-----------||
           4 /   2                2     |    \    2*pi   /|     4 /   2                2     |    \    2*pi   /|
    x1 = - \/  im (acos(2)) + 4*pi  *cos|-----------------| + I*\/  im (acos(2)) + 4*pi  *sin|-----------------|
                                        \        2        /                                  \        2        /
    $$x_{1} = - \sqrt[4]{\left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + 4 \pi^{2}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{2 \pi} \right)}}{2} \right)} + i \sqrt[4]{\left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + 4 \pi^{2}} \sin{\left(\frac{\operatorname{atan}{\left(\frac{\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{2 \pi} \right)}}{2} \right)}$$
                                      /    /im(acos(2))\\                                  /    /im(acos(2))\\
            ______________________    |atan|-----------||        ______________________    |atan|-----------||
         4 /   2                2     |    \    2*pi   /|     4 /   2                2     |    \    2*pi   /|
    x2 = \/  im (acos(2)) + 4*pi  *cos|-----------------| - I*\/  im (acos(2)) + 4*pi  *sin|-----------------|
                                      \        2        /                                  \        2        /
    $$x_{2} = \sqrt[4]{\left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + 4 \pi^{2}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{2 \pi} \right)}}{2} \right)} - i \sqrt[4]{\left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + 4 \pi^{2}} \sin{\left(\frac{\operatorname{atan}{\left(\frac{\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{2 \pi} \right)}}{2} \right)}$$
                                               /     /  I*im(acos(2)) + re(acos(2))   \\                                         /     /  I*im(acos(2)) + re(acos(2))   \\
                                               |I*log|--------------------------------||                                         |I*log|--------------------------------||
                                               |     |   _____________________________||                                         |     |   _____________________________||
              _____________________________    |     |  /   2              2          ||        _____________________________    |     |  /   2              2          ||
           4 /   2              2              |     \\/  im (acos(2)) + re (acos(2)) /|     4 /   2              2              |     \\/  im (acos(2)) + re (acos(2)) /|
    x3 = - \/  im (acos(2)) + re (acos(2)) *cos|---------------------------------------| + I*\/  im (acos(2)) + re (acos(2)) *sin|---------------------------------------|
                                               \                   2                   /                                         \                   2                   /
    $$x_{3} = - \sqrt[4]{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}} \cos{\left(\frac{i \log{\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{\sqrt{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}}} \right)}}{2} \right)} + i \sqrt[4]{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}} \sin{\left(\frac{i \log{\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{\sqrt{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}}} \right)}}{2} \right)}$$
                                             /     /  I*im(acos(2)) + re(acos(2))   \\                                         /     /  I*im(acos(2)) + re(acos(2))   \\
                                             |I*log|--------------------------------||                                         |I*log|--------------------------------||
                                             |     |   _____________________________||                                         |     |   _____________________________||
            _____________________________    |     |  /   2              2          ||        _____________________________    |     |  /   2              2          ||
         4 /   2              2              |     \\/  im (acos(2)) + re (acos(2)) /|     4 /   2              2              |     \\/  im (acos(2)) + re (acos(2)) /|
    x4 = \/  im (acos(2)) + re (acos(2)) *cos|---------------------------------------| - I*\/  im (acos(2)) + re (acos(2)) *sin|---------------------------------------|
                                             \                   2                   /                                         \                   2                   /
    $$x_{4} = \sqrt[4]{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}} \cos{\left(\frac{i \log{\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{\sqrt{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}}} \right)}}{2} \right)} - i \sqrt[4]{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}} \sin{\left(\frac{i \log{\left(\frac{\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}}{\sqrt{\left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2} + \left(\operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)^{2}}} \right)}}{2} \right)}$$
    Численный ответ [src]
    x1 = -2.52020878032318 + 0.261279523190126*i
    x2 = 2.52020878032318 - 0.261279523190126*i
    x3 = -0.811467157969075 - 0.811467157969075*i
    x4 = 0.811467157969075 + 0.811467157969075*i
    График
    cos(x^2)=2 (уравнение) /media/krcore-image-pods/hash/equation/f/78/b856a42089299f598da6a38007785.png