0,5x^2+1,5x-9=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 0,5x^2+1,5x-9=0
Решение
Подробное решение
Раскроем выражение в уравнении( x 2 2 + 3 x 2 − 9 ) + 0 = 0 \left(\frac{x^{2}}{2} + \frac{3 x}{2} - 9\right) + 0 = 0 ( 2 x 2 + 2 3 x − 9 ) + 0 = 0 Получаем квадратное уравнениеx 2 2 + 3 x 2 − 9 = 0 \frac{x^{2}}{2} + \frac{3 x}{2} - 9 = 0 2 x 2 + 2 3 x − 9 = 0 Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 2 a = \frac{1}{2} a = 2 1 b = 3 2 b = \frac{3}{2} b = 2 3 c = − 9 c = -9 c = − 9 , тоD = b^2 - 4 * a * c = (3/2)^2 - 4 * (1/2) * (-9) = 81/4 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 3 x_{1} = 3 x 1 = 3 Упростить x 2 = − 6 x_{2} = -6 x 2 = − 6 Упростить
Сумма и произведение корней
[src] ( − 6 + 0 ) + 3 \left(-6 + 0\right) + 3 ( − 6 + 0 ) + 3 1 ( − 6 ) 3 1 \left(-6\right) 3 1 ( − 6 ) 3
Теорема Виета
перепишем уравнениеx 2 2 + 3 x 2 − 9 = 0 \frac{x^{2}}{2} + \frac{3 x}{2} - 9 = 0 2 x 2 + 2 3 x − 9 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 3 x − 18 = 0 x^{2} + 3 x - 18 = 0 x 2 + 3 x − 18 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 3 p = 3 p = 3 q = c a q = \frac{c}{a} q = a c q = − 18 q = -18 q = − 18 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 3 x_{1} + x_{2} = -3 x 1 + x 2 = − 3 x 1 x 2 = − 18 x_{1} x_{2} = -18 x 1 x 2 = − 18