54-6x^2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 54-6x^2=0

    Решение

    Вы ввели [src]
            2    
    54 - 6*x  = 0
    546x2=054 - 6 x^{2} = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=6a = -6
    b=0b = 0
    c=54c = 54
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (-6) * (54) = 1296

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=3x_{1} = -3
    x2=3x_{2} = 3
    Быстрый ответ [src]
    x1 = -3
    x1=3x_{1} = -3
    x2 = 3
    x2=3x_{2} = 3
    Численный ответ [src]
    x1 = -3.0
    x2 = 3.0