3[2x+5]\8-2[5x+7]\3=7[x-15]\4-67\8 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 3[2x+5]\8-2[5x+7]\3=7[x-15]\4-67\8

    Решение

    Вы ввели [src]
    3*(2*x + 5)   2*(5*x + 7)   7*(x - 15)   67
    ----------- - ----------- = ---------- - --
         8             3            4        8 
    3(2x+5)82(5x+7)3=7(x15)4678\frac{3 \left(2 x + 5\right)}{8} - \frac{2 \left(5 x + 7\right)}{3} = \frac{7 \left(x - 15\right)}{4} - \frac{67}{8}
    Подробное решение
    Дано линейное уравнение:
    3*(2*x+5)/8-2*(5*x+7)/3 = 7*(x-15)/4-67/8

    Раскрываем скобочки в левой части ур-ния
    3*2*x/8+3*5/8-2*5*x/3-2*7/3 = 7*(x-15)/4-67/8

    Раскрываем скобочки в правой части ур-ния
    3*2*x/8+3*5/8-2*5*x/3-2*7/3 = 7*x/4-7*15/4-67/8

    Приводим подобные слагаемые в левой части ур-ния:
    -67/24 - 31*x/12 = 7*x/4-7*15/4-67/8

    Приводим подобные слагаемые в правой части ур-ния:
    -67/24 - 31*x/12 = -277/8 + 7*x/4

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    31x12=7x41916- \frac{31 x}{12} = \frac{7 x}{4} - \frac{191}{6}
    Переносим слагаемые с неизвестным x
    из правой части в левую:
    (13)x3=1916\frac{\left(-13\right) x}{3} = - \frac{191}{6}
    Разделим обе части ур-ния на -13/3
    x = -191/6 / (-13/3)

    Получим ответ: x = 191/26
    График
    02468-210121416-5050
    Быстрый ответ [src]
         191
    x1 = ---
          26
    x1=19126x_{1} = \frac{191}{26}
    Сумма и произведение корней [src]
    сумма
    191
    ---
     26
    19126\frac{191}{26}
    =
    191
    ---
     26
    19126\frac{191}{26}
    произведение
    191
    ---
     26
    19126\frac{191}{26}
    =
    191
    ---
     26
    19126\frac{191}{26}
    Численный ответ [src]
    x1 = 7.34615384615385
    График
    3[2x+5]\8-2[5x+7]\3=7[x-15]\4-67\8 (уравнение) /media/krcore-image-pods/hash/equation/b/37/dbc0cdbdf49f79265ad940c17ad5d.png