(x-1)^2=25 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (x-1)^2=25

    Решение

    Вы ввели [src]
           2     
    (x - 1)  = 25
    (x1)2=25\left(x - 1\right)^{2} = 25
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    (x1)2=25\left(x - 1\right)^{2} = 25
    в
    (x1)225=0\left(x - 1\right)^{2} - 25 = 0
    Раскроем выражение в уравнении
    (x1)225=0\left(x - 1\right)^{2} - 25 = 0
    Получаем квадратное уравнение
    x22x24=0x^{2} - 2 x - 24 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=2b = -2
    c=24c = -24
    , то
    D = b^2 - 4 * a * c = 

    (-2)^2 - 4 * (1) * (-24) = 100

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=6x_{1} = 6
    x2=4x_{2} = -4
    График
    05-20-15-10-51015200250
    Быстрый ответ [src]
    x1 = -4
    x1=4x_{1} = -4
    x2 = 6
    x2=6x_{2} = 6
    Численный ответ [src]
    x1 = -4.0
    x2 = 6.0
    График
    (x-1)^2=25 (уравнение) /media/krcore-image-pods/hash/equation/5/6c/0e11ba20905c157acae656079d59b.png