(х-16)(х+22)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (х-16)(х+22)=0

    Решение

    Вы ввели [src]
    (x - 16)*(x + 22) = 0
    $$\left(x - 16\right) \left(x + 22\right) = 0$$
    Подробное решение
    Раскроем выражение в уравнении
    $$\left(x - 16\right) \left(x + 22\right) = 0$$
    Получаем квадратное уравнение
    $$x^{2} + 6 x - 352 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 6$$
    $$c = -352$$
    , то
    D = b^2 - 4 * a * c = 

    (6)^2 - 4 * (1) * (-352) = 1444

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 16$$
    Упростить
    $$x_{2} = -22$$
    Упростить
    Быстрый ответ [src]
    x1 = -22
    $$x_{1} = -22$$
    x2 = 16
    $$x_{2} = 16$$
    Сумма и произведение корней [src]
    сумма
    -22 + 16
    $$-22 + 16$$
    =
    -6
    $$-6$$
    произведение
    -22*16
    $$- 352$$
    =
    -352
    $$-352$$
    Численный ответ [src]
    x1 = 16.0
    x2 = -22.0