(x+45)(x-16)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (x+45)(x-16)=0

    Решение

    Вы ввели [src]
    (x + 45)*(x - 16) = 0
    $$\left(x - 16\right) \left(x + 45\right) = 0$$
    Подробное решение
    Раскроем выражение в уравнении
    $$\left(x - 16\right) \left(x + 45\right) = 0$$
    Получаем квадратное уравнение
    $$x^{2} + 29 x - 720 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 29$$
    $$c = -720$$
    , то
    D = b^2 - 4 * a * c = 

    (29)^2 - 4 * (1) * (-720) = 3721

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 16$$
    Упростить
    $$x_{2} = -45$$
    Упростить
    Быстрый ответ [src]
    x1 = -45
    $$x_{1} = -45$$
    x2 = 16
    $$x_{2} = 16$$
    Сумма и произведение корней [src]
    сумма
    -45 + 16
    $$-45 + 16$$
    =
    -29
    $$-29$$
    произведение
    -45*16
    $$- 720$$
    =
    -720
    $$-720$$
    Численный ответ [src]
    x1 = -45.0
    x2 = 16.0