2
/ 3*(5 + re(y))*im(y) 3*(4 + re(y))*im(y) \ 3*im (y) 3*(4 + re(y))*(5 + re(y))
x1 = I*|- --------------------- + ---------------------| + --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (4 + re(y)) + im (y) (4 + re(y)) + im (y)/ (4 + re(y)) + im (y) (4 + re(y)) + im (y) $$x_{1} = i \left(\frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{3 \left(\operatorname{re}{\left(y\right)} + 5\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \left(\operatorname{re}{\left(y\right)} + 5\right)}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{3 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ 3*(5 + re(y))*im(y) 3*(4 + re(y))*im(y) \ 3*im (y) 3*(4 + re(y))*(5 + re(y))
I*|- --------------------- + ---------------------| + --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (4 + re(y)) + im (y) (4 + re(y)) + im (y)/ (4 + re(y)) + im (y) (4 + re(y)) + im (y)
$$i \left(\frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{3 \left(\operatorname{re}{\left(y\right)} + 5\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \left(\operatorname{re}{\left(y\right)} + 5\right)}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{3 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2
/ 3*(5 + re(y))*im(y) 3*(4 + re(y))*im(y) \ 3*im (y) 3*(4 + re(y))*(5 + re(y))
I*|- --------------------- + ---------------------| + --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (4 + re(y)) + im (y) (4 + re(y)) + im (y)/ (4 + re(y)) + im (y) (4 + re(y)) + im (y)
$$i \left(\frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{3 \left(\operatorname{re}{\left(y\right)} + 5\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \left(\operatorname{re}{\left(y\right)} + 5\right)}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{3 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2
/ 3*(5 + re(y))*im(y) 3*(4 + re(y))*im(y) \ 3*im (y) 3*(4 + re(y))*(5 + re(y))
I*|- --------------------- + ---------------------| + --------------------- + -------------------------
| 2 2 2 2 | 2 2 2 2
\ (4 + re(y)) + im (y) (4 + re(y)) + im (y)/ (4 + re(y)) + im (y) (4 + re(y)) + im (y)
$$i \left(\frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{3 \left(\operatorname{re}{\left(y\right)} + 5\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) + \frac{3 \left(\operatorname{re}{\left(y\right)} + 4\right) \left(\operatorname{re}{\left(y\right)} + 5\right)}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{3 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
/ 2 \
3*\im (y) + (4 + re(y))*(5 + re(y)) - I*im(y)/
----------------------------------------------
2 2
(4 + re(y)) + im (y) $$\frac{3 \left(\left(\operatorname{re}{\left(y\right)} + 4\right) \left(\operatorname{re}{\left(y\right)} + 5\right) + \left(\operatorname{im}{\left(y\right)}\right)^{2} - i \operatorname{im}{\left(y\right)}\right)}{\left(\operatorname{re}{\left(y\right)} + 4\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$x \left(y + 4\right) = 3 y + 15$$
Коэффициент при x равен
$$y + 4$$
тогда возможные случаи для y :
$$y < -4$$
$$y = -4$$
Рассмотри все случаи подробнее:
При
$$y < -4$$
уравнение будет
$$- x = 0$$
его решение
$$x = 0$$
При
$$y = -4$$
уравнение будет
$$-3 = 0$$
его решение
нет решений