x^2/3=3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2/3=3

    Решение

    Вы ввели [src]
     2    
    x     
    -- = 3
    3     
    $$\frac{x^{2}}{3} = 3$$
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$\frac{x^{2}}{3} = 3$$
    в
    $$\frac{x^{2}}{3} - 3 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = \frac{1}{3}$$
    $$b = 0$$
    $$c = -3$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1/3) * (-3) = 4

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 3$$
    $$x_{2} = -3$$
    График
    Быстрый ответ [src]
    x1 = -3
    $$x_{1} = -3$$
    x2 = 3
    $$x_{2} = 3$$
    Численный ответ [src]
    x1 = -3.0
    x2 = 3.0
    График
    x^2/3=3 (уравнение) /media/krcore-image-pods/hash/equation/3/e9/8ae692e72f4453f0d6eb3244f7a2d.png