(x^2-3x+2)/(x-a)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (x^2-3x+2)/(x-a)=0

    Решение

    Вы ввели [src]
     2              
    x  - 3*x + 2    
    ------------ = 0
       x - a        
    x23x+2a+x=0\frac{x^{2} - 3 x + 2}{- a + x} = 0
    Подробное решение
    Дано уравнение:
    x23x+2a+x=0\frac{x^{2} - 3 x + 2}{- a + x} = 0
    Домножим обе части ур-ния на знаменатели:
    x - a
    получим:
    x23x+2=0x^{2} - 3 x + 2 = 0
    x23x+2=0x^{2} - 3 x + 2 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=3b = -3
    c=2c = 2
    , то
    D = b^2 - 4 * a * c = 

    (-3)^2 - 4 * (1) * (2) = 1

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=2x_{1} = 2
    Упростить
    x2=1x_{2} = 1
    Упростить
    График
    Быстрый ответ [src]
    x1 = 1
    x1=1x_{1} = 1
    x2 = 2
    x2=2x_{2} = 2
    Сумма и произведение корней [src]
    сумма
    0 + 1 + 2
    (0+1)+2\left(0 + 1\right) + 2
    =
    3
    33
    произведение
    1*1*2
    1121 \cdot 1 \cdot 2
    =
    2
    22