x^2 = 1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2 = 1

    Решение

    Вы ввели [src]
     2    
    x  = 1
    x2=1x^{2} = 1
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2=1x^{2} = 1
    в
    x21=0x^{2} - 1 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=1c = -1
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-1) = 4

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=1x_{1} = 1
    x2=1x_{2} = -1
    График
    05-15-10-510150200
    Быстрый ответ [src]
    x1 = -1
    x1=1x_{1} = -1
    x2 = 1
    x2=1x_{2} = 1
    Численный ответ [src]
    x1 = -1.0
    x2 = 1.0
    График
    x^2 = 1 (уравнение) /media/krcore-image-pods/hash/equation/3/29/4a1cbfd7dfdf5ea8689235eaf05de.png