x^100=1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^100=1

    Решение

    Вы ввели [src]
     100    
    x    = 1
    $$x^{100} = 1$$
    Подробное решение
    Дано уравнение
    $$x^{100} = 1$$
    Т.к. степень в ур-нии равна = 100 - содержит чётное число 100 в числителе, то
    ур-ние будет иметь два действительных корня.
    Извлечём корень 100-й степени из обеих частей ур-ния:
    Получим:
    $$\sqrt[100]{\left(1 x + 0\right)^{100}} = \sqrt[100]{1}$$
    $$\sqrt[100]{\left(1 x + 0\right)^{100}} = \sqrt[100]{1} \left(-1\right)$$
    или
    $$x = 1$$
    $$x = -1$$
    Получим ответ: x = 1
    Получим ответ: x = -1
    или
    $$x_{1} = -1$$
    $$x_{2} = 1$$

    Остальные 98 корня(ей) являются комплексными.
    сделаем замену:
    $$z = x$$
    тогда ур-ние будет таким:
    $$z^{100} = 1$$
    Любое комплексное число можно представить так:
    $$z = r e^{i p}$$
    подставляем в уравнение
    $$r^{100} e^{100 i p} = 1$$
    где
    $$r = 1$$
    - модуль комплексного числа
    Подставляем r:
    $$e^{100 i p} = 1$$
    Используя формулу Эйлера, найдём корни для p
    $$i \sin{\left(100 p \right)} + \cos{\left(100 p \right)} = 1$$
    значит
    $$\cos{\left(100 p \right)} = 1$$
    и
    $$\sin{\left(100 p \right)} = 0$$
    тогда
    $$p = \frac{\pi N}{50}$$
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    $$z_{1} = -1$$
    $$z_{2} = 1$$
    $$z_{3} = - i$$
    $$z_{4} = i$$
    $$z_{5} = - \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}$$
    $$z_{6} = - \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}$$
    $$z_{7} = \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}$$
    $$z_{8} = \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}$$
    $$z_{9} = - \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}$$
    $$z_{10} = - \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}$$
    $$z_{11} = \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}$$
    $$z_{12} = \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}$$
    $$z_{13} = - \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$z_{14} = - \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$z_{15} = \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$z_{16} = \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$z_{17} = - \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$z_{18} = - \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$z_{19} = \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$z_{20} = \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$z_{21} = - \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$z_{22} = - \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$z_{23} = \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$z_{24} = \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$z_{25} = - \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$z_{26} = - \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$z_{27} = \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$z_{28} = \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$z_{29} = - \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$z_{30} = - \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$z_{31} = \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$z_{32} = \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$z_{33} = - \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$z_{34} = - \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$z_{35} = \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$z_{36} = \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$z_{37} = - \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$z_{38} = - \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$z_{39} = \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$z_{40} = \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$z_{41} = - \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$z_{42} = - \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$z_{43} = \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$z_{44} = \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$z_{45} = - \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$z_{46} = - \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$z_{47} = \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$z_{48} = \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$z_{49} = - \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$z_{50} = - \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$z_{51} = \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$z_{52} = \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$z_{53} = - \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$z_{54} = - \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$z_{55} = \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$z_{56} = \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$z_{57} = - \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$z_{58} = - \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$z_{59} = \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$z_{60} = \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$z_{61} = - \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$z_{62} = - \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$z_{63} = \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$z_{64} = \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$z_{65} = - \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$z_{66} = - \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$z_{67} = \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$z_{68} = \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$z_{69} = - \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$z_{70} = - \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$z_{71} = \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$z_{72} = \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$z_{73} = - \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$z_{74} = - \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$z_{75} = \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$z_{76} = \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$z_{77} = - \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$z_{78} = - \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$z_{79} = \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$z_{80} = \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$z_{81} = - \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$z_{82} = - \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$z_{83} = \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$z_{84} = \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$z_{85} = - \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$z_{86} = - \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$z_{87} = \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$z_{88} = \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$z_{89} = - \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$z_{90} = - \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$z_{91} = - \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$z_{92} = - \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$z_{93} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$z_{94} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}$$
    $$z_{95} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$z_{96} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}$$
    $$z_{97} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$z_{98} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}$$
    $$z_{99} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$z_{100} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}$$
    делаем обратную замену
    $$z = x$$
    $$x = z$$

    Тогда, окончательный ответ:
    $$x_{1} = -1$$
    $$x_{2} = 1$$
    $$x_{3} = - i$$
    $$x_{4} = i$$
    $$x_{5} = - \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}$$
    $$x_{6} = - \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}$$
    $$x_{7} = \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}$$
    $$x_{8} = \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}$$
    $$x_{9} = - \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}$$
    $$x_{10} = - \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}$$
    $$x_{11} = \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}$$
    $$x_{12} = \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}$$
    $$x_{13} = - \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$x_{14} = - \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$x_{15} = \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$x_{16} = \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}$$
    $$x_{17} = - \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$x_{18} = - \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$x_{19} = \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$x_{20} = \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}$$
    $$x_{21} = - \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$x_{22} = - \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$x_{23} = \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$x_{24} = \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}$$
    $$x_{25} = - \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$x_{26} = - \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$x_{27} = \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$x_{28} = \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}$$
    $$x_{29} = - \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$x_{30} = - \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$x_{31} = \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$x_{32} = \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}$$
    $$x_{33} = - \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$x_{34} = - \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$x_{35} = \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$x_{36} = \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}$$
    $$x_{37} = - \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$x_{38} = - \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$x_{39} = \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$x_{40} = \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}$$
    $$x_{41} = - \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$x_{42} = - \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$x_{43} = \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$x_{44} = \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}$$
    $$x_{45} = - \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$x_{46} = - \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$x_{47} = \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$x_{48} = \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}$$
    $$x_{49} = - \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$x_{50} = - \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$x_{51} = \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$x_{52} = \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}$$
    $$x_{53} = - \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$x_{54} = - \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$x_{55} = \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$x_{56} = \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}$$
    $$x_{57} = - \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$x_{58} = - \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$x_{59} = \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$x_{60} = \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}$$
    $$x_{61} = - \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$x_{62} = - \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$x_{63} = \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$x_{64} = \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}$$
    $$x_{65} = - \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$x_{66} = - \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$x_{67} = \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$x_{68} = \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}$$
    $$x_{69} = - \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$x_{70} = - \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$x_{71} = \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$x_{72} = \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}$$
    $$x_{73} = - \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$x_{74} = - \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$x_{75} = \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$x_{76} = \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}$$
    $$x_{77} = - \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$x_{78} = - \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$x_{79} = \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$x_{80} = \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}$$
    $$x_{81} = - \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$x_{82} = - \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$x_{83} = \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$x_{84} = \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}$$
    $$x_{85} = - \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$x_{86} = - \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$x_{87} = \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$x_{88} = \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$x_{89} = - \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$x_{90} = - \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
    $$x_{91} = - \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$x_{92} = - \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    $$x_{93} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$x_{94} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}$$
    $$x_{95} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$x_{96} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}$$
    $$x_{97} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$x_{98} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}$$
    $$x_{99} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}$$
    $$x_{100} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}$$
    График
    Быстрый ответ [src]
    x1 = -1
    $$x_{1} = -1$$
    x2 = 1
    $$x_{2} = 1$$
                ___________                
               /       ___      /      ___\
              /  5   \/ 5       |1   \/ 5 |
    x3 = -   /   - - -----  + I*|- + -----|
           \/    8     8        \4     4  /
    $$x_{3} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)$$
                ___________                  
               /       ___      /        ___\
              /  5   \/ 5       |  1   \/ 5 |
    x4 = -   /   - - -----  + I*|- - - -----|
           \/    8     8        \  4     4  /
    $$x_{4} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right)$$
              ___________                
             /       ___      /      ___\
            /  5   \/ 5       |1   \/ 5 |
    x5 =   /   - - -----  + I*|- + -----|
         \/    8     8        \4     4  /
    $$x_{5} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)$$
              ___________                  
             /       ___      /        ___\
            /  5   \/ 5       |  1   \/ 5 |
    x6 =   /   - - -----  + I*|- - - -----|
         \/    8     8        \  4     4  /
    $$x_{6} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right)$$
                ___________                  
               /       ___      /        ___\
              /  5   \/ 5       |  1   \/ 5 |
    x7 = -   /   - + -----  + I*|- - + -----|
           \/    8     8        \  4     4  /
    $$x_{7} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)$$
                ___________                
               /       ___      /      ___\
              /  5   \/ 5       |1   \/ 5 |
    x8 = -   /   - + -----  + I*|- - -----|
           \/    8     8        \4     4  /
    $$x_{8} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)$$
              ___________                  
             /       ___      /        ___\
            /  5   \/ 5       |  1   \/ 5 |
    x9 =   /   - + -----  + I*|- - + -----|
         \/    8     8        \  4     4  /
    $$x_{9} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)$$
               ___________                
              /       ___      /      ___\
             /  5   \/ 5       |1   \/ 5 |
    x10 =   /   - + -----  + I*|- - -----|
          \/    8     8        \4     4  /
    $$x_{10} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)$$
    x11 = -I
    $$x_{11} = - i$$
    x12 = I
    $$x_{12} = i$$
               /pi\        /pi\
    x13 = - cos|--| - I*sin|--|
               \50/        \50/
    $$x_{13} = - \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}$$
               /pi\        /pi\
    x14 = - cos|--| + I*sin|--|
               \50/        \50/
    $$x_{14} = - \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}$$
                 /pi\      /pi\
    x15 = - I*sin|--| + cos|--|
                 \50/      \50/
    $$x_{15} = \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}$$
               /pi\      /pi\
    x16 = I*sin|--| + cos|--|
               \50/      \50/
    $$x_{16} = \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}$$
               /pi\        /pi\
    x17 = - cos|--| - I*sin|--|
               \25/        \25/
    $$x_{17} = - \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}$$
               /pi\        /pi\
    x18 = - cos|--| + I*sin|--|
               \25/        \25/
    $$x_{18} = - \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}$$
                 /pi\      /pi\
    x19 = - I*sin|--| + cos|--|
                 \25/      \25/
    $$x_{19} = \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}$$
               /pi\      /pi\
    x20 = I*sin|--| + cos|--|
               \25/      \25/
    $$x_{20} = \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}$$
               /3*pi\        /3*pi\
    x21 = - cos|----| - I*sin|----|
               \ 50 /        \ 50 /
    $$x_{21} = - \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}$$
               /3*pi\        /3*pi\
    x22 = - cos|----| + I*sin|----|
               \ 50 /        \ 50 /
    $$x_{22} = - \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}$$
                 /3*pi\      /3*pi\
    x23 = - I*sin|----| + cos|----|
                 \ 50 /      \ 50 /
    $$x_{23} = \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}$$
               /3*pi\      /3*pi\
    x24 = I*sin|----| + cos|----|
               \ 50 /      \ 50 /
    $$x_{24} = \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}$$
               /2*pi\        /2*pi\
    x25 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{25} = - \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}$$
               /2*pi\        /2*pi\
    x26 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{26} = - \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}$$
                 /2*pi\      /2*pi\
    x27 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{27} = \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}$$
               /2*pi\      /2*pi\
    x28 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{28} = \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}$$
               /3*pi\        /3*pi\
    x29 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{29} = - \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}$$
               /3*pi\        /3*pi\
    x30 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{30} = - \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}$$
                 /3*pi\      /3*pi\
    x31 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{31} = \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}$$
               /3*pi\      /3*pi\
    x32 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{32} = \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}$$
               /7*pi\        /7*pi\
    x33 = - cos|----| - I*sin|----|
               \ 50 /        \ 50 /
    $$x_{33} = - \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}$$
               /7*pi\        /7*pi\
    x34 = - cos|----| + I*sin|----|
               \ 50 /        \ 50 /
    $$x_{34} = - \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}$$
                 /7*pi\      /7*pi\
    x35 = - I*sin|----| + cos|----|
                 \ 50 /      \ 50 /
    $$x_{35} = \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}$$
               /7*pi\      /7*pi\
    x36 = I*sin|----| + cos|----|
               \ 50 /      \ 50 /
    $$x_{36} = \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}$$
               /4*pi\        /4*pi\
    x37 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{37} = - \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}$$
               /4*pi\        /4*pi\
    x38 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{38} = - \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}$$
                 /4*pi\      /4*pi\
    x39 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{39} = \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}$$
               /4*pi\      /4*pi\
    x40 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{40} = \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}$$
               /9*pi\        /9*pi\
    x41 = - cos|----| - I*sin|----|
               \ 50 /        \ 50 /
    $$x_{41} = - \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}$$
               /9*pi\        /9*pi\
    x42 = - cos|----| + I*sin|----|
               \ 50 /        \ 50 /
    $$x_{42} = - \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}$$
                 /9*pi\      /9*pi\
    x43 = - I*sin|----| + cos|----|
                 \ 50 /      \ 50 /
    $$x_{43} = \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}$$
               /9*pi\      /9*pi\
    x44 = I*sin|----| + cos|----|
               \ 50 /      \ 50 /
    $$x_{44} = \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}$$
               /11*pi\        /11*pi\
    x45 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    $$x_{45} = - \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}$$
               /11*pi\        /11*pi\
    x46 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    $$x_{46} = - \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}$$
                 /11*pi\      /11*pi\
    x47 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    $$x_{47} = \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}$$
               /11*pi\      /11*pi\
    x48 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    $$x_{48} = \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}$$
               /6*pi\        /6*pi\
    x49 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{49} = - \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}$$
               /6*pi\        /6*pi\
    x50 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{50} = - \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}$$
                 /6*pi\      /6*pi\
    x51 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{51} = \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}$$
               /6*pi\      /6*pi\
    x52 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{52} = \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}$$
               /13*pi\        /13*pi\
    x53 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    $$x_{53} = - \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}$$
               /13*pi\        /13*pi\
    x54 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    $$x_{54} = - \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}$$
                 /13*pi\      /13*pi\
    x55 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    $$x_{55} = \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}$$
               /13*pi\      /13*pi\
    x56 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    $$x_{56} = \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}$$
               /7*pi\        /7*pi\
    x57 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{57} = - \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}$$
               /7*pi\        /7*pi\
    x58 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{58} = - \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}$$
                 /7*pi\      /7*pi\
    x59 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{59} = \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}$$
               /7*pi\      /7*pi\
    x60 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{60} = \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}$$
               /8*pi\        /8*pi\
    x61 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{61} = - \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}$$
               /8*pi\        /8*pi\
    x62 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{62} = - \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}$$
                 /8*pi\      /8*pi\
    x63 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{63} = \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}$$
               /8*pi\      /8*pi\
    x64 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{64} = \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}$$
               /17*pi\        /17*pi\
    x65 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    $$x_{65} = - \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}$$
               /17*pi\        /17*pi\
    x66 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    $$x_{66} = - \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}$$
                 /17*pi\      /17*pi\
    x67 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    $$x_{67} = \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}$$
               /17*pi\      /17*pi\
    x68 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    $$x_{68} = \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}$$
               /9*pi\        /9*pi\
    x69 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    $$x_{69} = - \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}$$
               /9*pi\        /9*pi\
    x70 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    $$x_{70} = - \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}$$
                 /9*pi\      /9*pi\
    x71 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    $$x_{71} = \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}$$
               /9*pi\      /9*pi\
    x72 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    $$x_{72} = \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}$$
               /19*pi\        /19*pi\
    x73 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    $$x_{73} = - \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}$$
               /19*pi\        /19*pi\
    x74 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    $$x_{74} = - \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}$$
                 /19*pi\      /19*pi\
    x75 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    $$x_{75} = \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}$$
               /19*pi\      /19*pi\
    x76 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    $$x_{76} = \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}$$
               /21*pi\        /21*pi\
    x77 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    $$x_{77} = - \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}$$
               /21*pi\        /21*pi\
    x78 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    $$x_{78} = - \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}$$
                 /21*pi\      /21*pi\
    x79 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    $$x_{79} = \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}$$
               /21*pi\      /21*pi\
    x80 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    $$x_{80} = \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}$$
               /11*pi\        /11*pi\
    x81 = - cos|-----| - I*sin|-----|
               \  25 /        \  25 /
    $$x_{81} = - \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}$$
               /11*pi\        /11*pi\
    x82 = - cos|-----| + I*sin|-----|
               \  25 /        \  25 /
    $$x_{82} = - \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}$$
                 /11*pi\      /11*pi\
    x83 = - I*sin|-----| + cos|-----|
                 \  25 /      \  25 /
    $$x_{83} = \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}$$
               /11*pi\      /11*pi\
    x84 = I*sin|-----| + cos|-----|
               \  25 /      \  25 /
    $$x_{84} = \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}$$
               /23*pi\        /23*pi\
    x85 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    $$x_{85} = - \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}$$
               /23*pi\        /23*pi\
    x86 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    $$x_{86} = - \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}$$
                 /23*pi\      /23*pi\
    x87 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    $$x_{87} = \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}$$
               /23*pi\      /23*pi\
    x88 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    $$x_{88} = \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}$$
               /12*pi\        /12*pi\
    x89 = - cos|-----| - I*sin|-----|
               \  25 /        \  25 /
    $$x_{89} = - \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}$$
               /12*pi\        /12*pi\
    x90 = - cos|-----| + I*sin|-----|
               \  25 /        \  25 /
    $$x_{90} = - \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}$$
                 /12*pi\      /12*pi\
    x91 = - I*sin|-----| + cos|-----|
                 \  25 /      \  25 /
    $$x_{91} = \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}$$
               /12*pi\      /12*pi\
    x92 = I*sin|-----| + cos|-----|
               \  25 /      \  25 /
    $$x_{92} = \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}$$
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x93 = - - + ----- - I*  /   - + ----- 
            4     4       \/    8     8   
    $$x_{93} = - \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x94 = - - + ----- + I*  /   - + ----- 
            4     4       \/    8     8   
    $$x_{94} = - \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
                             ___________
                ___         /       ___ 
          1   \/ 5         /  5   \/ 5  
    x95 = - + ----- - I*  /   - - ----- 
          4     4       \/    8     8   
    $$x_{95} = \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
                             ___________
                ___         /       ___ 
          1   \/ 5         /  5   \/ 5  
    x96 = - + ----- + I*  /   - - ----- 
          4     4       \/    8     8   
    $$x_{96} = \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x97 = - - - ----- - I*  /   - - ----- 
            4     4       \/    8     8   
    $$x_{97} = - \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x98 = - - - ----- + I*  /   - - ----- 
            4     4       \/    8     8   
    $$x_{98} = - \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
                             ___________
                ___         /       ___ 
          1   \/ 5         /  5   \/ 5  
    x99 = - - ----- - I*  /   - + ----- 
          4     4       \/    8     8   
    $$x_{99} = - \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
                              ___________
                 ___         /       ___ 
           1   \/ 5         /  5   \/ 5  
    x100 = - - ----- + I*  /   - + ----- 
           4     4       \/    8     8   
    $$x_{100} = - \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
    Численный ответ [src]
    x1 = 0.968583161128631 - 0.248689887164855*i
    x2 = 0.770513242775789 + 0.63742398974869*i
    x3 = -0.992114701314478 - 0.125333233564304*i
    x4 = 0.998026728428272 + 0.0627905195293134*i
    x5 = 0.187381314585725 - 0.982287250728689*i
    x6 = 0.982287250728689 - 0.187381314585725*i
    x7 = 0.535826794978997 - 0.844327925502015*i
    x8 = 0.248689887164855 - 0.968583161128631*i
    x9 = -0.951056516295154 - 0.309016994374947*i
    x10 = 0.309016994374947 - 0.951056516295154*i
    x11 = -0.728968627421412 - 0.684547105928689*i
    x12 = -0.63742398974869 + 0.770513242775789*i
    x13 = -0.929776485888251 + 0.368124552684678*i
    x14 = -0.187381314585725 - 0.982287250728689*i
    x15 = 1.0*i
    x16 = -0.309016994374947 - 0.951056516295154*i
    x17 = -0.0627905195293134 - 0.998026728428272*i
    x18 = 0.951056516295154 + 0.309016994374947*i
    x19 = -0.309016994374947 + 0.951056516295154*i
    x20 = -0.982287250728689 - 0.187381314585725*i
    x21 = -0.187381314585725 + 0.982287250728689*i
    x22 = 0.968583161128631 + 0.248689887164855*i
    x23 = 0.876306680043864 + 0.481753674101715*i
    x24 = 0.876306680043864 - 0.481753674101715*i
    x25 = -0.968583161128631 + 0.248689887164855*i
    x26 = 0.248689887164855 + 0.968583161128631*i
    x27 = 0.481753674101715 - 0.876306680043864*i
    x28 = 0.587785252292473 + 0.809016994374947*i
    x29 = -0.951056516295154 + 0.309016994374947*i
    x30 = 0.809016994374947 - 0.587785252292473*i
    x31 = -0.968583161128631 - 0.248689887164855*i
    x32 = -0.992114701314478 + 0.125333233564304*i
    x33 = -0.844327925502015 - 0.535826794978997*i
    x34 = -0.481753674101715 - 0.876306680043864*i
    x35 = 0.90482705246602 + 0.425779291565073*i
    x36 = -1.0*i
    x37 = 0.125333233564304 + 0.992114701314478*i
    x38 = -0.90482705246602 + 0.425779291565073*i
    x39 = 0.929776485888251 - 0.368124552684678*i
    x40 = 0.368124552684678 - 0.929776485888251*i
    x41 = 0.844327925502015 + 0.535826794978997*i
    x42 = 0.368124552684678 + 0.929776485888251*i
    x43 = 0.187381314585725 + 0.982287250728689*i
    x44 = 0.728968627421412 - 0.684547105928689*i
    x45 = -0.876306680043864 - 0.481753674101715*i
    x46 = 0.844327925502015 - 0.535826794978997*i
    x47 = 0.992114701314478 + 0.125333233564304*i
    x48 = -0.368124552684678 + 0.929776485888251*i
    x49 = -0.63742398974869 - 0.770513242775789*i
    x50 = 0.63742398974869 - 0.770513242775789*i
    x51 = 0.0627905195293134 + 0.998026728428272*i
    x52 = -0.998026728428272 + 0.0627905195293134*i
    x53 = 0.587785252292473 - 0.809016994374947*i
    x54 = 0.684547105928689 + 0.728968627421412*i
    x55 = 1.0
    x56 = -0.998026728428272 - 0.0627905195293134*i
    x57 = -0.125333233564304 + 0.992114701314478*i
    x58 = 0.0627905195293134 - 0.998026728428272*i
    x59 = -0.684547105928689 - 0.728968627421412*i
    x60 = -0.481753674101715 + 0.876306680043864*i
    x61 = 0.90482705246602 - 0.425779291565073*i
    x62 = 0.125333233564304 - 0.992114701314478*i
    x63 = -0.809016994374947 - 0.587785252292473*i
    x64 = 0.982287250728689 + 0.187381314585725*i
    x65 = -0.125333233564304 - 0.992114701314478*i
    x66 = 0.63742398974869 + 0.770513242775789*i
    x67 = -0.809016994374947 + 0.587785252292473*i
    x68 = -0.929776485888251 - 0.368124552684678*i
    x69 = -0.770513242775789 - 0.63742398974869*i
    x70 = 0.992114701314478 - 0.125333233564304*i
    x71 = -0.587785252292473 - 0.809016994374947*i
    x72 = 0.728968627421412 + 0.684547105928689*i
    x73 = 0.951056516295154 - 0.309016994374947*i
    x74 = 0.770513242775789 - 0.63742398974869*i
    x75 = 0.309016994374947 + 0.951056516295154*i
    x76 = -0.90482705246602 - 0.425779291565073*i
    x77 = -0.684547105928689 + 0.728968627421412*i
    x78 = 0.684547105928689 - 0.728968627421412*i
    x79 = 0.929776485888251 + 0.368124552684678*i
    x80 = 0.425779291565073 + 0.90482705246602*i
    x81 = -0.535826794978997 + 0.844327925502015*i
    x82 = 0.809016994374947 + 0.587785252292473*i
    x83 = 0.998026728428272 - 0.0627905195293134*i
    x84 = -0.248689887164855 + 0.968583161128631*i
    x85 = -0.587785252292473 + 0.809016994374947*i
    x86 = 0.481753674101715 + 0.876306680043864*i
    x87 = -0.425779291565073 - 0.90482705246602*i
    x88 = -0.770513242775789 + 0.63742398974869*i
    x89 = 0.535826794978997 + 0.844327925502015*i
    x90 = -0.535826794978997 - 0.844327925502015*i
    x91 = -0.728968627421412 + 0.684547105928689*i
    x92 = -0.982287250728689 + 0.187381314585725*i
    x93 = -0.425779291565073 + 0.90482705246602*i
    x94 = -0.0627905195293134 + 0.998026728428272*i
    x95 = -0.248689887164855 - 0.968583161128631*i
    x96 = -0.368124552684678 - 0.929776485888251*i
    x97 = -0.844327925502015 + 0.535826794978997*i
    x98 = -0.876306680043864 + 0.481753674101715*i
    x99 = 0.425779291565073 - 0.90482705246602*i
    x100 = -1.0
    График
    x^100=1 (уравнение) /media/krcore-image-pods/hash/equation/c/7e/c4d52abc4fb57520b258bd84497b2.png