z^2+4=8 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: z^2+4=8

    Решение

    Вы ввели [src]
     2        
    z  + 4 = 8
    $$z^{2} + 4 = 8$$
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$z^{2} + 4 = 8$$
    в
    $$\left(z^{2} + 4\right) - 8 = 0$$
    Это уравнение вида
    a*z^2 + b*z + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$z_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$z_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 0$$
    $$c = -4$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-4) = 16

    Т.к. D > 0, то уравнение имеет два корня.
    z1 = (-b + sqrt(D)) / (2*a)

    z2 = (-b - sqrt(D)) / (2*a)

    или
    $$z_{1} = 2$$
    $$z_{2} = -2$$
    График
    Быстрый ответ [src]
    z1 = -2
    $$z_{1} = -2$$
    z2 = 2
    $$z_{2} = 2$$
    Численный ответ [src]
    z1 = -2.0
    z2 = 2.0
    График
    z^2+4=8 (уравнение) /media/krcore-image-pods/hash/equation/9/88/0d6b882472646155e32d00f606b3e.png