Подробное решение
Дано уравнение
$$z^{5} + 32 = 0$$
Т.к. степень в ур-нии равна = 5 - не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 5-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[5]{z^{5}} = \sqrt[5]{-32}$$
или
$$z = 2 \sqrt[5]{-1}$$
Раскрываем скобочки в правой части ур-ния
z = -2*1^1/5
Получим ответ: z = 2*(-1)^(1/5)
Остальные 4 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{5} = -32$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{5} e^{5 i p} = -32$$
где
$$r = 2$$
- модуль комплексного числа
Подставляем r:
$$e^{5 i p} = -1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left (5 p \right )} + \cos{\left (5 p \right )} = -1$$
значит
$$\cos{\left (5 p \right )} = -1$$
и
$$\sin{\left (5 p \right )} = 0$$
тогда
$$p = \frac{2 \pi}{5} N + \frac{\pi}{5}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = -2$$
$$w_{2} = \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$w_{3} = - \frac{\sqrt{5}}{2} + \frac{1}{2} - \sqrt{5} i \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} - i \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$w_{4} = \frac{1}{2} + 2 \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{\sqrt{5} i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$w_{5} = - 2 \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{1}{2} - \frac{i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{\sqrt{5} i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{\sqrt{5} i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = -2$$
$$z_{2} = \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$z_{3} = - \frac{\sqrt{5}}{2} + \frac{1}{2} - \sqrt{5} i \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} - i \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$z_{4} = \frac{1}{2} + 2 \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{\sqrt{5} i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$z_{5} = - 2 \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{1}{2} - \frac{i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{\sqrt{5} i}{2} \sqrt{- \frac{\sqrt{5}}{8} + \frac{5}{8}} + \frac{\sqrt{5} i}{2} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$