6*x^2-2*x-4=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 6*x^2-2*x-4=0

    Решение

    Вы ввели [src]
       2              
    6*x  - 2*x - 4 = 0
    6x22x4=06 x^{2} - 2 x - 4 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=6a = 6
    b=2b = -2
    c=4c = -4
    , то
    D = b^2 - 4 * a * c = 

    (-2)^2 - 4 * (6) * (-4) = 100

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=1x_{1} = 1
    Упростить
    x2=23x_{2} = - \frac{2}{3}
    Упростить
    График
    05-15-10-51015-10001000
    Быстрый ответ [src]
    x1 = -2/3
    x1=23x_{1} = - \frac{2}{3}
    x2 = 1
    x2=1x_{2} = 1
    Сумма и произведение корней [src]
    сумма
    0 - 2/3 + 1
    (23+0)+1\left(- \frac{2}{3} + 0\right) + 1
    =
    1/3
    13\frac{1}{3}
    произведение
    1*-2/3*1
    1(23)11 \left(- \frac{2}{3}\right) 1
    =
    -2/3
    23- \frac{2}{3}
    Теорема Виета
    перепишем уравнение
    6x22x4=06 x^{2} - 2 x - 4 = 0
    из
    ax2+bx+c=0a x^{2} + b x + c = 0
    как приведённое квадратное уравнение
    x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
    x2x323=0x^{2} - \frac{x}{3} - \frac{2}{3} = 0
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=13p = - \frac{1}{3}
    q=caq = \frac{c}{a}
    q=23q = - \frac{2}{3}
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=13x_{1} + x_{2} = \frac{1}{3}
    x1x2=23x_{1} x_{2} = - \frac{2}{3}
    Численный ответ [src]
    x1 = -0.666666666666667
    x2 = 1.0
    График
    6*x^2-2*x-4=0 (уравнение) /media/krcore-image-pods/hash/equation/c/c1/1e4a1456a0a4c7777d6ebceb058e7.png