3*x^2 + 5/(2*sqrt(x)) = 0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 3*x^2 + 5/(2*sqrt(x)) = 0
Решение
Подробное решение
Дано уравнение3 x 2 + 5 2 x = 0 3 x^{2} + \frac{5}{2 \sqrt{x}} = 0 3 x 2 + 2 x 5 = 0 преобразуем1 x 5 2 = − 6 5 \frac{1}{x^{\frac{5}{2}}} = - \frac{6}{5} x 2 5 1 = − 5 6 Т.к. степень в ур-нии равна = -5/2 и свободный член = -6/5 < 0, зн. действительных решений у соотв. ур-ния не существует Остальные 4 корня(ей) являются комплексными. сделаем замену:z = x z = x z = x тогда ур-ние будет таким:1 z 5 2 = − 6 5 \frac{1}{z^{\frac{5}{2}}} = - \frac{6}{5} z 2 5 1 = − 5 6 Любое комплексное число можно представить так:z = r e i p z = r e^{i p} z = r e i p подставляем в уравнение1 ( r e i p ) 5 2 = − 6 5 \frac{1}{\left(r e^{i p}\right)^{\frac{5}{2}}} = - \frac{6}{5} ( r e i p ) 2 5 1 = − 5 6 гдеr = 5 2 5 ⋅ 6 3 5 6 r = \frac{5^{\frac{2}{5}} \cdot 6^{\frac{3}{5}}}{6} r = 6 5 5 2 ⋅ 6 5 3 - модуль комплексного числа Подставляем r:e − 5 i p 2 = − 1 e^{- \frac{5 i p}{2}} = -1 e − 2 5 i p = − 1 Используя формулу Эйлера, найдём корни для p− i sin ( 5 p 2 ) + cos ( 5 p 2 ) = − 1 - i \sin{\left(\frac{5 p}{2} \right)} + \cos{\left(\frac{5 p}{2} \right)} = -1 − i sin ( 2 5 p ) + cos ( 2 5 p ) = − 1 значитcos ( 5 p 2 ) = − 1 \cos{\left(\frac{5 p}{2} \right)} = -1 cos ( 2 5 p ) = − 1 и− sin ( 5 p 2 ) = 0 - \sin{\left(\frac{5 p}{2} \right)} = 0 − sin ( 2 5 p ) = 0 тогдаp = − 4 π N 5 − 2 π 5 p = - \frac{4 \pi N}{5} - \frac{2 \pi}{5} p = − 5 4 π N − 5 2 π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z:z 1 = ( 5 5 ⋅ 6 4 5 24 + 5 7 10 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 i 5 8 − 5 8 6 ) 2 z_{1} = \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6}\right)^{2} z 1 = 24 5 5 ⋅ 6 5 4 + 24 5 10 7 ⋅ 6 5 4 + 6 5 5 ⋅ 6 5 4 i 8 5 − 8 5 2 z 2 = ( − 5 7 10 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 24 − 5 7 10 ⋅ 6 4 5 i 5 8 − 5 8 12 − 5 5 ⋅ 6 4 5 i 5 8 − 5 8 12 ) 2 z_{2} = \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} - \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right)^{2} z 2 = − 24 5 10 7 ⋅ 6 5 4 + 24 5 5 ⋅ 6 5 4 − 12 5 10 7 ⋅ 6 5 4 i 8 5 − 8 5 − 12 5 5 ⋅ 6 5 4 i 8 5 − 8 5 2 z 3 = ( 5 5 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 − 5 7 10 ⋅ 6 4 5 i 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 i 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 i 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 i 5 8 − 5 8 24 ) 2 z_{3} = \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6} - \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24}\right)^{2} z 3 = 24 5 5 ⋅ 6 5 4 + 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 − 24 5 10 7 ⋅ 6 5 4 i 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 i 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 i 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 i 8 5 − 8 5 2 z 4 = ( − 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 + 5 5 ⋅ 6 4 5 24 − 5 5 ⋅ 6 4 5 i 5 8 − 5 8 24 + 5 5 ⋅ 6 4 5 i 5 8 + 5 8 24 + 5 7 10 ⋅ 6 4 5 i 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 i 5 8 + 5 8 24 ) 2 z_{4} = \left(- \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24}\right)^{2} z 4 = − 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 + 24 5 5 ⋅ 6 5 4 − 24 5 5 ⋅ 6 5 4 i 8 5 − 8 5 + 24 5 5 ⋅ 6 5 4 i 8 5 + 8 5 + 24 5 10 7 ⋅ 6 5 4 i 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 i 8 5 + 8 5 2 делаем обратную заменуz = x z = x z = x x = z x = z x = z Тогда, окончательный ответ:x 1 = ( 5 5 ⋅ 6 4 5 24 + 5 7 10 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 i 5 8 − 5 8 6 ) 2 x_{1} = \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{6}\right)^{2} x 1 = 24 5 5 ⋅ 6 5 4 + 24 5 10 7 ⋅ 6 5 4 + 6 5 5 ⋅ 6 5 4 i 8 5 − 8 5 2 x 2 = ( − 5 7 10 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 24 − 5 7 10 ⋅ 6 4 5 i 5 8 − 5 8 12 − 5 5 ⋅ 6 4 5 i 5 8 − 5 8 12 ) 2 x_{2} = \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} - \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right)^{2} x 2 = − 24 5 10 7 ⋅ 6 5 4 + 24 5 5 ⋅ 6 5 4 − 12 5 10 7 ⋅ 6 5 4 i 8 5 − 8 5 − 12 5 5 ⋅ 6 5 4 i 8 5 − 8 5 2 x 3 = ( 5 5 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 − 5 7 10 ⋅ 6 4 5 i 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 i 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 i 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 i 5 8 − 5 8 24 ) 2 x_{3} = \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6} - \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24}\right)^{2} x 3 = 24 5 5 ⋅ 6 5 4 + 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 − 24 5 10 7 ⋅ 6 5 4 i 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 i 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 i 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 i 8 5 − 8 5 2 x 4 = ( − 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 + 5 5 ⋅ 6 4 5 24 − 5 5 ⋅ 6 4 5 i 5 8 − 5 8 24 + 5 5 ⋅ 6 4 5 i 5 8 + 5 8 24 + 5 7 10 ⋅ 6 4 5 i 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 i 5 8 + 5 8 24 ) 2 x_{4} = \left(- \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24}\right)^{2} x 4 = − 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 + 24 5 5 ⋅ 6 5 4 − 24 5 5 ⋅ 6 5 4 i 8 5 − 8 5 + 24 5 5 ⋅ 6 5 4 i 8 5 + 8 5 + 24 5 10 7 ⋅ 6 5 4 i 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 i 8 5 + 8 5 2
График
-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 200
___________
/ ___\ / ___ /5 ___ 4/5 7/10 4/5\
2 2/5 3/5 |5 \/ 5 | 5 ___ 4/5 / 5 \/ 5 |\/ 5 *6 5 *6 |
/5 ___ 4/5 7/10 4/5\ 5 *6 *|- - -----| I*\/ 5 *6 * / - - ----- *|---------- + ----------|
|\/ 5 *6 5 *6 | \8 8 / \/ 8 8 \ 24 24 /
x1 = |---------- + ----------| - --------------------- + -------------------------------------------------------
\ 24 24 / 6 3 x 1 = − 5 2 5 ⋅ 6 3 5 ( 5 8 − 5 8 ) 6 + ( 5 5 ⋅ 6 4 5 24 + 5 7 10 ⋅ 6 4 5 24 ) 2 + 5 5 ⋅ 6 4 5 i 5 8 − 5 8 ( 5 5 ⋅ 6 4 5 24 + 5 7 10 ⋅ 6 4 5 24 ) 3 x_{1} = - \frac{5^{\frac{2}{5}} \cdot 6^{\frac{3}{5}} \left(\frac{5}{8} - \frac{\sqrt{5}}{8}\right)}{6} + \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24}\right)^{2} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24}\right)}{3} x 1 = − 6 5 5 2 ⋅ 6 5 3 ( 8 5 − 8 5 ) + ( 24 5 5 ⋅ 6 5 4 + 24 5 10 7 ⋅ 6 5 4 ) 2 + 3 5 5 ⋅ 6 5 4 i 8 5 − 8 5 ( 24 5 5 ⋅ 6 5 4 + 24 5 10 7 ⋅ 6 5 4 ) 2
/ ___________ ___________\ / ___________ ___________\
| / ___ / ___ | | / ___ / ___ |
2 | 5 ___ 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 |
/ 7/10 4/5 5 ___ 4/5\ | \/ 5 *6 * / - - ----- 5 *6 * / - - ----- | / 7/10 4/5 5 ___ 4/5\ | \/ 5 *6 * / - - ----- 5 *6 * / - - ----- |
| 5 *6 \/ 5 *6 | | \/ 8 8 \/ 8 8 | | 5 *6 \/ 5 *6 | | \/ 8 8 \/ 8 8 |
x2 = |- ---------- + ----------| - |- --------------------------- - ---------------------------| + 2*I*|- ---------- + ----------|*|- --------------------------- - ---------------------------|
\ 24 24 / \ 12 12 / \ 24 24 / \ 12 12 / x 2 = − ( − 5 7 10 ⋅ 6 4 5 5 8 − 5 8 12 − 5 5 ⋅ 6 4 5 5 8 − 5 8 12 ) 2 + ( − 5 7 10 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 24 ) 2 + 2 i ( − 5 7 10 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 24 ) ( − 5 7 10 ⋅ 6 4 5 5 8 − 5 8 12 − 5 5 ⋅ 6 4 5 5 8 − 5 8 12 ) x_{2} = - \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right)^{2} + \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24}\right)^{2} + 2 i \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24}\right) \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{12}\right) x 2 = − − 12 5 10 7 ⋅ 6 5 4 8 5 − 8 5 − 12 5 5 ⋅ 6 5 4 8 5 − 8 5 2 + ( − 24 5 10 7 ⋅ 6 5 4 + 24 5 5 ⋅ 6 5 4 ) 2 + 2 i ( − 24 5 10 7 ⋅ 6 5 4 + 24 5 5 ⋅ 6 5 4 ) − 12 5 10 7 ⋅ 6 5 4 8 5 − 8 5 − 12 5 5 ⋅ 6 5 4 8 5 − 8 5 2 2
/ ___________ ___________\ / ___________ ___________ ___________ ___________\ / ___________ ___________\ / ___________ ___________ ___________ ___________\
| / ___ / ___ | | / ___ / ___ / ___ / ___ | | / ___ / ___ | | / ___ / ___ / ___ / ___ |
| 5 ___ 4/5 / 5 \/ 5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 5 ___ 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 5 ___ 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 |
|5 ___ 4/5 \/ 5 *6 * / - - ----- * / - + ----- | | \/ 5 *6 * / - - ----- \/ 5 *6 * / - + ----- 5 *6 * / - + ----- 5 *6 * / - - ----- | |5 ___ 4/5 \/ 5 *6 * / - - ----- * / - + ----- | | \/ 5 *6 * / - - ----- \/ 5 *6 * / - + ----- 5 *6 * / - + ----- 5 *6 * / - - ----- |
|\/ 5 *6 \/ 8 8 \/ 8 8 | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | |\/ 5 *6 \/ 8 8 \/ 8 8 | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 |
x3 = |---------- + --------------------------------------------| - |- --------------------------- - --------------------------- - --------------------------- + ---------------------------| + 2*I*|---------- + --------------------------------------------|*|- --------------------------- - --------------------------- - --------------------------- + ---------------------------|
\ 24 6 / \ 24 24 24 24 / \ 24 6 / \ 24 24 24 24 / x 3 = − ( − 5 7 10 ⋅ 6 4 5 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 5 8 − 5 8 24 ) 2 + ( 5 5 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 ) 2 + 2 i ( 5 5 ⋅ 6 4 5 24 + 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 ) ( − 5 7 10 ⋅ 6 4 5 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 5 8 + 5 8 24 − 5 5 ⋅ 6 4 5 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 5 8 − 5 8 24 ) x_{3} = - \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24}\right)^{2} + \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6}\right)^{2} + 2 i \left(\frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6}\right) \left(- \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} - \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24}\right) x 3 = − − 24 5 10 7 ⋅ 6 5 4 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 8 5 − 8 5 2 + 24 5 5 ⋅ 6 5 4 + 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 2 + 2 i 24 5 5 ⋅ 6 5 4 + 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 − 24 5 10 7 ⋅ 6 5 4 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 8 5 + 8 5 − 24 5 5 ⋅ 6 5 4 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 8 5 − 8 5 2 2
/ ___________ ___________\ / ___________ ___________ ___________ ___________\ / ___________ ___________\ / ___________ ___________ ___________ ___________\
| / ___ / ___ | | / ___ / ___ / ___ / ___ | | / ___ / ___ | | / ___ / ___ / ___ / ___ |
| 5 ___ 4/5 / 5 \/ 5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 5 ___ 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 / 5 \/ 5 | | 5 ___ 4/5 / 5 \/ 5 5 ___ 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 7/10 4/5 / 5 \/ 5 |
|5 ___ 4/5 \/ 5 *6 * / - - ----- * / - + ----- | | \/ 5 *6 * / - - ----- \/ 5 *6 * / - + ----- 5 *6 * / - - ----- 5 *6 * / - + ----- | |5 ___ 4/5 \/ 5 *6 * / - - ----- * / - + ----- | | \/ 5 *6 * / - - ----- \/ 5 *6 * / - + ----- 5 *6 * / - - ----- 5 *6 * / - + ----- |
|\/ 5 *6 \/ 8 8 \/ 8 8 | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 | |\/ 5 *6 \/ 8 8 \/ 8 8 | | \/ 8 8 \/ 8 8 \/ 8 8 \/ 8 8 |
x4 = |---------- - --------------------------------------------| - |- --------------------------- + --------------------------- + --------------------------- + ---------------------------| + 2*I*|---------- - --------------------------------------------|*|- --------------------------- + --------------------------- + --------------------------- + ---------------------------|
\ 24 6 / \ 24 24 24 24 / \ 24 6 / \ 24 24 24 24 / x 4 = − ( − 5 5 ⋅ 6 4 5 5 8 − 5 8 24 + 5 5 ⋅ 6 4 5 5 8 + 5 8 24 + 5 7 10 ⋅ 6 4 5 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 5 8 + 5 8 24 ) 2 + ( − 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 + 5 5 ⋅ 6 4 5 24 ) 2 + 2 i ( − 5 5 ⋅ 6 4 5 5 8 − 5 8 5 8 + 5 8 6 + 5 5 ⋅ 6 4 5 24 ) ( − 5 5 ⋅ 6 4 5 5 8 − 5 8 24 + 5 5 ⋅ 6 4 5 5 8 + 5 8 24 + 5 7 10 ⋅ 6 4 5 5 8 − 5 8 24 + 5 7 10 ⋅ 6 4 5 5 8 + 5 8 24 ) x_{4} = - \left(- \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24}\right)^{2} + \left(- \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24}\right)^{2} + 2 i \left(- \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{6} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}}}{24}\right) \left(- \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{\sqrt[5]{5} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{24} + \frac{5^{\frac{7}{10}} \cdot 6^{\frac{4}{5}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{24}\right) x 4 = − − 24 5 5 ⋅ 6 5 4 8 5 − 8 5 + 24 5 5 ⋅ 6 5 4 8 5 + 8 5 + 24 5 10 7 ⋅ 6 5 4 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 8 5 + 8 5 2 + − 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 + 24 5 5 ⋅ 6 5 4 2 + 2 i − 6 5 5 ⋅ 6 5 4 8 5 − 8 5 8 5 + 8 5 + 24 5 5 ⋅ 6 5 4 − 24 5 5 ⋅ 6 5 4 8 5 − 8 5 + 24 5 5 ⋅ 6 5 4 8 5 + 8 5 + 24 5 10 7 ⋅ 6 5 4 8 5 − 8 5 + 24 5 10 7 ⋅ 6 5 4 8 5 + 8 5 x1 = 0.287282959208151 - 0.884166034065896*i x2 = 0.287282959208145 + 0.884166034065898*i x3 = 0.287282959208113 - 0.884166034065919*i x4 = 0.287282959208111 - 0.88416603406588*i x5 = 0.287282959208145 - 0.884166034065898*i