Произведение корней x^2+3*x+5=0

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Решение

    Сумма и произведение корней [src]
    сумма
              ____             ____
      3   I*\/ 11      3   I*\/ 11 
    - - - -------- + - - + --------
      2      2         2      2    
    (3211i2)+(32+11i2)\left(- \frac{3}{2} - \frac{\sqrt{11} i}{2}\right) + \left(- \frac{3}{2} + \frac{\sqrt{11} i}{2}\right)
    =
    -3
    3-3
    произведение
    /          ____\ /          ____\
    |  3   I*\/ 11 | |  3   I*\/ 11 |
    |- - - --------|*|- - + --------|
    \  2      2    / \  2      2    /
    (3211i2)(32+11i2)\left(- \frac{3}{2} - \frac{\sqrt{11} i}{2}\right) \left(- \frac{3}{2} + \frac{\sqrt{11} i}{2}\right)
    =
    5
    55
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=3p = 3
    q=caq = \frac{c}{a}
    q=5q = 5
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=3x_{1} + x_{2} = -3
    x1x2=5x_{1} x_{2} = 5