Сумма корней w^3+z=0

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Решение

    Сумма и произведение корней [src]
    сумма
        3        /  3          2         \       2         
    - re (w) + I*\im (w) - 3*re (w)*im(w)/ + 3*im (w)*re(w)
    $$i \left(- 3 \left(\operatorname{re}{\left(w\right)}\right)^{2} \operatorname{im}{\left(w\right)} + \left(\operatorname{im}{\left(w\right)}\right)^{3}\right) - \left(\operatorname{re}{\left(w\right)}\right)^{3} + 3 \operatorname{re}{\left(w\right)} \left(\operatorname{im}{\left(w\right)}\right)^{2}$$
    =
        3        /  3          2         \       2         
    - re (w) + I*\im (w) - 3*re (w)*im(w)/ + 3*im (w)*re(w)
    $$i \left(- 3 \left(\operatorname{re}{\left(w\right)}\right)^{2} \operatorname{im}{\left(w\right)} + \left(\operatorname{im}{\left(w\right)}\right)^{3}\right) - \left(\operatorname{re}{\left(w\right)}\right)^{3} + 3 \operatorname{re}{\left(w\right)} \left(\operatorname{im}{\left(w\right)}\right)^{2}$$
    произведение
        3        /  3          2         \       2         
    - re (w) + I*\im (w) - 3*re (w)*im(w)/ + 3*im (w)*re(w)
    $$i \left(- 3 \left(\operatorname{re}{\left(w\right)}\right)^{2} \operatorname{im}{\left(w\right)} + \left(\operatorname{im}{\left(w\right)}\right)^{3}\right) - \left(\operatorname{re}{\left(w\right)}\right)^{3} + 3 \operatorname{re}{\left(w\right)} \left(\operatorname{im}{\left(w\right)}\right)^{2}$$
    =
        3          2              /  2          2   \      
    - re (w) + 3*im (w)*re(w) + I*\im (w) - 3*re (w)/*im(w)
    $$i \left(- 3 \left(\operatorname{re}{\left(w\right)}\right)^{2} + \left(\operatorname{im}{\left(w\right)}\right)^{2}\right) \operatorname{im}{\left(w\right)} - \left(\operatorname{re}{\left(w\right)}\right)^{3} + 3 \operatorname{re}{\left(w\right)} \left(\operatorname{im}{\left(w\right)}\right)^{2}$$