Сумма корней x^3=16

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Решение

    Сумма и произведение корней [src]
    сумма
      3 ___     3 ___     3 ___   ___     3 ___     3 ___   ___
    2*\/ 2  + - \/ 2  - I*\/ 2 *\/ 3  + - \/ 2  + I*\/ 2 *\/ 3 
    $$\left(2 \sqrt[3]{2} + \left(- \sqrt[3]{2} - \sqrt[3]{2} \sqrt{3} i\right)\right) + \left(- \sqrt[3]{2} + \sqrt[3]{2} \sqrt{3} i\right)$$
    =
    0
    $$0$$
    произведение
      3 ___ /  3 ___     3 ___   ___\ /  3 ___     3 ___   ___\
    2*\/ 2 *\- \/ 2  - I*\/ 2 *\/ 3 /*\- \/ 2  + I*\/ 2 *\/ 3 /
    $$2 \sqrt[3]{2} \left(- \sqrt[3]{2} - \sqrt[3]{2} \sqrt{3} i\right) \left(- \sqrt[3]{2} + \sqrt[3]{2} \sqrt{3} i\right)$$
    =
    16
    $$16$$
    Теорема Виета
    это приведённое кубическое уравнение
    $$p x^{2} + q x + v + x^{3} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = 0$$
    $$v = \frac{d}{a}$$
    $$v = -16$$
    Формулы Виета
    $$x_{1} + x_{2} + x_{3} = - p$$
    $$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
    $$x_{1} x_{2} x_{3} = v$$
    $$x_{1} + x_{2} + x_{3} = 0$$
    $$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
    $$x_{1} x_{2} x_{3} = -16$$