График функции y = 4*x^2+x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
          2    
f(x) = 4*x  + x
f(x)=4x2+xf{\left (x \right )} = 4 x^{2} + x
График функции
-2.0-1.5-1.0-0.50.00.51.01.5-2020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
4x2+x=04 x^{2} + x = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=14x_{1} = - \frac{1}{4}
x2=0x_{2} = 0
Численное решение
x1=0x_{1} = 0
x2=0.25x_{2} = -0.25
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 4*x^2 + x.
4024 \cdot 0^{2}
Результат:
f(0)=0f{\left (0 \right )} = 0
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
8x+1=08 x + 1 = 0
Решаем это уравнение
Корни этого ур-ния
x1=18x_{1} = - \frac{1}{8}
Зн. экстремумы в точках:
(-1/8, -1/16)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=18x_{1} = - \frac{1}{8}
Максимумов у функции нет
Убывает на промежутках
[-1/8, oo)

Возрастает на промежутках
(-oo, -1/8]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
8=08 = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(4x2+x)=\lim_{x \to -\infty}\left(4 x^{2} + x\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(4x2+x)=\lim_{x \to \infty}\left(4 x^{2} + x\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 4*x^2 + x, делённой на x при x->+oo и x ->-oo
limx(1x(4x2+x))=\lim_{x \to -\infty}\left(\frac{1}{x} \left(4 x^{2} + x\right)\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(1x(4x2+x))=\lim_{x \to \infty}\left(\frac{1}{x} \left(4 x^{2} + x\right)\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
4x2+x=4x2x4 x^{2} + x = 4 x^{2} - x
- Нет
4x2+x=4x2x4 x^{2} + x = - 4 x^{2} - - x
- Нет
значит, функция
не является
ни чётной ни нечётной