График функции пересекает ось Y при f = 0 значит надо решить уравнение: y2+2y=0 Решаем это уравнение Точки пересечения с осью Y:
Аналитическое решение y1=−2 y2=0 Численное решение y1=0 y2=−2
Точки пересечения с осью координат Y
График пересекает ось Y, когда y равняется 0: подставляем y = 0 в 2*y + y^2. 0⋅2+02 Результат: f(0)=0 Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dydf(y)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dydf(y)= Первая производная 2y+2=0 Решаем это уравнение Корни этого ур-ния y1=−1 Зн. экстремумы в точках:
(-1, -1)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: y1=−1 Максимумов у функции нет Убывает на промежутках
[-1, oo)
Возрастает на промежутках
(-oo, -1]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dy2d2f(y)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dy2d2f(y)= Вторая производная 2=0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при y->+oo и y->-oo y→−∞lim(y2+2y)=∞ Возьмём предел значит, горизонтальной асимптоты слева не существует y→∞lim(y2+2y)=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 2*y + y^2, делённой на y при y->+oo и y ->-oo y→−∞lim(y1(y2+2y))=−∞ Возьмём предел значит, наклонной асимптоты слева не существует y→∞lim(y1(y2+2y))=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-y) и f = -f(-y). Итак, проверяем: y2+2y=y2−2y - Нет y2+2y=−y2−−2y - Нет значит, функция не является ни чётной ни нечётной