График функции y = sqrt(1)-x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         ___    
f(x) = \/ 1  - x
f(x)=x+1f{\left (x \right )} = - x + \sqrt{1}
График функции
02468-8-6-4-2-1010-2020
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x+1=0- x + \sqrt{1} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=1x_{1} = 1
Численное решение
x1=1x_{1} = 1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в sqrt(1) - x.
0+1- 0 + \sqrt{1}
Результат:
f(0)=1f{\left (0 \right )} = 1
Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
1=0-1 = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x+1)=\lim_{x \to -\infty}\left(- x + \sqrt{1}\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x+1)=\lim_{x \to \infty}\left(- x + \sqrt{1}\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(1) - x, делённой на x при x->+oo и x ->-oo
limx(1x(x+1))=1\lim_{x \to -\infty}\left(\frac{1}{x} \left(- x + \sqrt{1}\right)\right) = -1
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
y=xy = - x
limx(1x(x+1))=1\lim_{x \to \infty}\left(\frac{1}{x} \left(- x + \sqrt{1}\right)\right) = -1
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
y=xy = - x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x+1=x+1- x + \sqrt{1} = x + \sqrt{1}
- Нет
x+1=x1- x + \sqrt{1} = - x - 1
- Нет
значит, функция
не является
ни чётной ни нечётной