График функции y = -(x+4)^2+9

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
                2    
f(x) = - (x + 4)  + 9
f(x)=(x+4)2+9f{\left (x \right )} = - \left(x + 4\right)^{2} + 9
График функции
-9.0-8.0-7.0-6.0-5.0-4.0-3.0-2.0-1.00.01.0-2525
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(x+4)2+9=0- \left(x + 4\right)^{2} + 9 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=7x_{1} = -7
x2=1x_{2} = -1
Численное решение
x1=7x_{1} = -7
x2=1x_{2} = -1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в -(x + 4)^2 + 9.
16+9- 16 + 9
Результат:
f(0)=7f{\left (0 \right )} = -7
Точка:
(0, -7)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
2x8=0- 2 x - 8 = 0
Решаем это уравнение
Корни этого ур-ния
x1=4x_{1} = -4
Зн. экстремумы в точках:
(-4, 9)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
x1=4x_{1} = -4
Убывает на промежутках
(-oo, -4]

Возрастает на промежутках
[-4, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
2=0-2 = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx((x+4)2+9)=\lim_{x \to -\infty}\left(- \left(x + 4\right)^{2} + 9\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx((x+4)2+9)=\lim_{x \to \infty}\left(- \left(x + 4\right)^{2} + 9\right) = -\infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции -(x + 4)^2 + 9, делённой на x при x->+oo и x ->-oo
limx(1x((x+4)2+9))=\lim_{x \to -\infty}\left(\frac{1}{x} \left(- \left(x + 4\right)^{2} + 9\right)\right) = \infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(1x((x+4)2+9))=\lim_{x \to \infty}\left(\frac{1}{x} \left(- \left(x + 4\right)^{2} + 9\right)\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
(x+4)2+9=(x+4)2+9- \left(x + 4\right)^{2} + 9 = - \left(- x + 4\right)^{2} + 9
- Нет
(x+4)2+9=1(x+4)29- \left(x + 4\right)^{2} + 9 = - -1 \left(- x + 4\right)^{2} - 9
- Нет
значит, функция
не является
ни чётной ни нечётной