График функции y = (|x|)*(2+x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
f(x) = |x|*(2 + x)
$$f{\left (x \right )} = \left(x + 2\right) \left|{x}\right|$$
График функции
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\left(x + 2\right) \left|{x}\right| = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = -2$$
$$x_{2} = 0$$
Численное решение
$$x_{1} = -2$$
$$x_{2} = 0$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в |x|*(2 + x).
$$2 \left|{0}\right|$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\left(x + 2\right) \operatorname{sign}{\left (x \right )} + \left|{x}\right| = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = -1$$
Зн. экстремумы в точках:
(0, 0)

(-1, 1)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 0$$
Максимумы функции в точках:
$$x_{2} = -1$$
Убывает на промежутках
(-oo, -1] U [0, oo)

Возрастает на промежутках
[-1, 0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\left(x + 2\right) \left|{x}\right|\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\left(x + 2\right) \left|{x}\right|\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции |x|*(2 + x), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left|{x}\right|}{x} \left(x + 2\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты слева не существует
$$\lim_{x \to \infty}\left(\frac{\left|{x}\right|}{x} \left(x + 2\right)\right) = \infty$$
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\left(x + 2\right) \left|{x}\right| = \left(- x + 2\right) \left|{x}\right|$$
- Нет
$$\left(x + 2\right) \left|{x}\right| = - \left(- x + 2\right) \left|{x}\right|$$
- Нет
значит, функция
не является
ни чётной ни нечётной