График функции y = 1/2^(x-1)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        1 - x
f(x) = 2     
f(x)=(12)x1f{\left(x \right)} = \left(\frac{1}{2}\right)^{x - 1}
График функции
02468-8-6-4-2-101002000
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(12)x1=0\left(\frac{1}{2}\right)^{x - 1} = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (1/2)^(x - 1*1).
(12)(1)1+0\left(\frac{1}{2}\right)^{\left(-1\right) 1 + 0}
Результат:
f(0)=2f{\left(0 \right)} = 2
Точка:
(0, 2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
21xlog(2)=0- 2^{1 - x} \log{\left(2 \right)} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
22xlog(2)2=02 \cdot 2^{- x} \log{\left(2 \right)}^{2} = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(12)x1=\lim_{x \to -\infty} \left(\frac{1}{2}\right)^{x - 1} = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(12)x1=0\lim_{x \to \infty} \left(\frac{1}{2}\right)^{x - 1} = 0
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=0y = 0
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (1/2)^(x - 1*1), делённой на x при x->+oo и x ->-oo
limx(21xx)=\lim_{x \to -\infty}\left(\frac{2^{1 - x}}{x}\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(21xx)=0\lim_{x \to \infty}\left(\frac{2^{1 - x}}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
(12)x1=(12)x1\left(\frac{1}{2}\right)^{x - 1} = \left(\frac{1}{2}\right)^{- x - 1}
- Нет
(12)x1=(12)x1\left(\frac{1}{2}\right)^{x - 1} = - \left(\frac{1}{2}\right)^{- x - 1}
- Нет
значит, функция
не является
ни чётной ни нечётной
График
График функции y = 1/2^(x-1) /media/krcore-image-pods/hash/xy/b/97/d99990098b85f656cfb90716b5c5d.png