График функции y = x+1/(x-4)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
             1  
f(x) = x + -----
           x - 4
$$f{\left (x \right )} = x + \frac{1}{x - 4}$$
График функции
Область определения функции
Точки, в которых функция точно неопределена:
$$x_{1} = 4$$
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x + \frac{1}{x - 4} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = - \sqrt{3} + 2$$
$$x_{2} = \sqrt{3} + 2$$
Численное решение
$$x_{1} = 0.267949192431$$
$$x_{2} = 3.73205080757$$
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x + 1/(x - 4).
$$\frac{1}{-4}$$
Результат:
$$f{\left (0 \right )} = - \frac{1}{4}$$
Точка:
(0, -1/4)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$1 - \frac{1}{\left(x - 4\right)^{2}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 3$$
$$x_{2} = 5$$
Зн. экстремумы в точках:
(3, 2)

(5, 6)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{2} = 5$$
Максимумы функции в точках:
$$x_{2} = 3$$
Убывает на промежутках
(-oo, 3] U [5, oo)

Возрастает на промежутках
[3, 5]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2}{\left(x - 4\right)^{3}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
$$x_{1} = 4$$
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x + \frac{1}{x - 4}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x + \frac{1}{x - 4}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x + 1/(x - 4), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x + \frac{1}{x - 4}\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x + \frac{1}{x - 4}\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x$$
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x + \frac{1}{x - 4} = - x + \frac{1}{- x - 4}$$
- Нет
$$x + \frac{1}{x - 4} = - -1 x - \frac{1}{- x - 4}$$
- Нет
значит, функция
не является
ни чётной ни нечётной