График функции y = x^2-7

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        2    
f(x) = x  - 7
f(x)=x27f{\left(x \right)} = x^{2} - 7
График функции
02468-8-6-4-2-1010-100100
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x27=0x^{2} - 7 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=7x_{1} = - \sqrt{7}
x2=7x_{2} = \sqrt{7}
Численное решение
x1=2.64575131106459x_{1} = -2.64575131106459
x2=2.64575131106459x_{2} = 2.64575131106459
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^2 - 1*7.
(1)7+02\left(-1\right) 7 + 0^{2}
Результат:
f(0)=7f{\left(0 \right)} = -7
Точка:
(0, -7)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
2x=02 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
Зн. экстремумы в точках:
(0, -1*7)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=0x_{1} = 0
Максимумов у функции нет
Убывает на промежутках
[0,)\left[0, \infty\right)
Возрастает на промежутках
(,0]\left(-\infty, 0\right]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
2=02 = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x27)=\lim_{x \to -\infty}\left(x^{2} - 7\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x27)=\lim_{x \to \infty}\left(x^{2} - 7\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2 - 1*7, делённой на x при x->+oo и x ->-oo
limx(x27x)=\lim_{x \to -\infty}\left(\frac{x^{2} - 7}{x}\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(x27x)=\lim_{x \to \infty}\left(\frac{x^{2} - 7}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x27=x27x^{2} - 7 = x^{2} - 7
- Да
x27=7x2x^{2} - 7 = 7 - x^{2}
- Нет
значит, функция
является
чётной
График
График функции y = x^2-7 /media/krcore-image-pods/hash/xy/9/f5/d1a59148d707d3a8823064cefb54d.png