График функции y = ((x^3)+16)/x

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        3     
       x  + 16
f(x) = -------
          x   
f(x)=1x(x3+16)f{\left (x \right )} = \frac{1}{x} \left(x^{3} + 16\right)
График функции
-4.0-3.0-2.0-1.00.01.02.03.0-10001000
Область определения функции
Точки, в которых функция точно неопределена:
x1=0x_{1} = 0
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
1x(x3+16)=0\frac{1}{x} \left(x^{3} + 16\right) = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=223x_{1} = - 2 \sqrt[3]{2}
Численное решение
x1=2.51984209979x_{1} = -2.51984209979
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x^3 + 16)/x.
10(03+16)\frac{1}{0} \left(0^{3} + 16\right)
Результат:
f(0)=~f{\left (0 \right )} = \tilde{\infty}
зн.f не пересекает Y
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
3x1x2(x3+16)=03 x - \frac{1}{x^{2}} \left(x^{3} + 16\right) = 0
Решаем это уравнение
Корни этого ур-ния
x1=2x_{1} = 2
Зн. экстремумы в точках:
(2, 12)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=2x_{1} = 2
Максимумов у функции нет
Убывает на промежутках
[2, oo)

Возрастает на промежутках
(-oo, 2]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
1x3(2x3+32)=0\frac{1}{x^{3}} \left(2 x^{3} + 32\right) = 0
Решаем это уравнение
Корни этого ур-ния
x1=223x_{1} = - 2 \sqrt[3]{2}
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
x1=0x_{1} = 0

limx0(1x3(2x3+32))=\lim_{x \to 0^-}\left(\frac{1}{x^{3}} \left(2 x^{3} + 32\right)\right) = -\infty
limx0+(1x3(2x3+32))=\lim_{x \to 0^+}\left(\frac{1}{x^{3}} \left(2 x^{3} + 32\right)\right) = \infty
- пределы не равны, зн.
x1=0x_{1} = 0
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, -2*2**(1/3)]

Выпуклая на промежутках
[-2*2**(1/3), oo)
Вертикальные асимптоты
Есть:
x1=0x_{1} = 0
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(1x(x3+16))=\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{3} + 16\right)\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(1x(x3+16))=\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{3} + 16\right)\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x^3 + 16)/x, делённой на x при x->+oo и x ->-oo
limx(1x2(x3+16))=\lim_{x \to -\infty}\left(\frac{1}{x^{2}} \left(x^{3} + 16\right)\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(1x2(x3+16))=\lim_{x \to \infty}\left(\frac{1}{x^{2}} \left(x^{3} + 16\right)\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
1x(x3+16)=1x(x3+16)\frac{1}{x} \left(x^{3} + 16\right) = - \frac{1}{x} \left(- x^{3} + 16\right)
- Нет
1x(x3+16)=1x(x316)\frac{1}{x} \left(x^{3} + 16\right) = - \frac{1}{x} \left(x^{3} - 16\right)
- Нет
значит, функция
не является
ни чётной ни нечётной