График функции пересекает ось X при f = 0 значит надо решить уравнение: 31−x3=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=1 Численное решение x1=1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в (1 - x^3)^(1/3). 31−03 Результат: f(0)=1 Точка:
(0, 1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= первая производная −(1−x3)32x2=0 Решаем это уравнение Корни этого ур-ния x1=0 Зн. экстремумы в точках:
(0, 1)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумов у функции нет Не изменяет значения на всей числовой оси
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= вторая производная −(1−x3)322x(1−x3x3+1)=0 Решаем это уравнение Корни этого ур-ния x1=0
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках (−∞,0] Выпуклая на промежутках [0,∞)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim31−x3=∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lim31−x3=∞3−1 Возьмём предел значит, уравнение горизонтальной асимптоты справа: y=∞3−1
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (1 - x^3)^(1/3), делённой на x при x->+oo и x ->-oo x→−∞lim(x31−x3)=−1 Возьмём предел значит, уравнение наклонной асимптоты слева: y=−x x→∞lim(x31−x3)=3−1 Возьмём предел значит, уравнение наклонной асимптоты справа: y=3−1x
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: 31−x3=3x3+1 - Нет 31−x3=−3x3+1 - Нет значит, функция не является ни чётной ни нечётной