График функции y = x/(x^2-1)+x

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
         x       
f(x) = ------ + x
        2        
       x  - 1    
$$f{\left (x \right )} = x + \frac{x}{x^{2} - 1}$$
График функции
[LaTeX]
Область определения функции
[LaTeX]
Точки, в которых функция точно неопределена:
$$x_{1} = -1$$
$$x_{2} = 1$$
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$x + \frac{x}{x^{2} - 1} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x/(x^2 - 1) + x.
$$\frac{0}{-1 + 0^{2}}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{2 x^{2}}{\left(x^{2} - 1\right)^{2}} + 1 + \frac{1}{x^{2} - 1} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
$$x_{2} = - \sqrt{3}$$
$$x_{3} = \sqrt{3}$$
Зн. экстремумы в точках:
(0, 0)

              ___ 
    ___  -3*\/ 3  
(-\/ 3, --------)
            2     

            ___ 
   ___  3*\/ 3  
(\/ 3, -------)
           2    


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{3} = \sqrt{3}$$
Максимумы функции в точках:
$$x_{3} = - \sqrt{3}$$
Убывает на промежутках
(-oo, -sqrt(3)] U [sqrt(3), oo)

Возрастает на промежутках
[-sqrt(3), sqrt(3)]
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{2 x}{\left(x^{2} - 1\right)^{2}} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:
Точки, где есть неопределённость:
$$x_{1} = -1$$
$$x_{2} = 1$$

$$\lim_{x \to -1^-}\left(\frac{2 x}{\left(x^{2} - 1\right)^{2}} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)\right) = -\infty$$
$$\lim_{x \to -1^+}\left(\frac{2 x}{\left(x^{2} - 1\right)^{2}} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)\right) = \infty$$
- пределы не равны, зн.
$$x_{1} = -1$$
- является точкой перегиба
$$\lim_{x \to 1^-}\left(\frac{2 x}{\left(x^{2} - 1\right)^{2}} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)\right) = -\infty$$
$$\lim_{x \to 1^+}\left(\frac{2 x}{\left(x^{2} - 1\right)^{2}} \left(\frac{4 x^{2}}{x^{2} - 1} - 3\right)\right) = \infty$$
- пределы не равны, зн.
$$x_{2} = 1$$
- является точкой перегиба

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 0]

Выпуклая на промежутках
[0, oo)
Вертикальные асимптоты
[LaTeX]
Есть:
$$x_{1} = -1$$
$$x_{2} = 1$$
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(x + \frac{x}{x^{2} - 1}\right) = -\infty$$
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
$$\lim_{x \to \infty}\left(x + \frac{x}{x^{2} - 1}\right) = \infty$$
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции x/(x^2 - 1) + x, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x + \frac{x}{x^{2} - 1}\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты слева:
$$y = x$$
$$\lim_{x \to \infty}\left(\frac{1}{x} \left(x + \frac{x}{x^{2} - 1}\right)\right) = 1$$
Возьмём предел
значит,
уравнение наклонной асимптоты справа:
$$y = x$$
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$x + \frac{x}{x^{2} - 1} = - x - \frac{x}{x^{2} - 1}$$
- Нет
$$x + \frac{x}{x^{2} - 1} = - -1 x - - \frac{x}{x^{2} - 1}$$
- Нет
значит, функция
не является
ни чётной ни нечётной