Точки, в которых функция точно неопределена: x1=−3 x2=3
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0 значит надо решить уравнение: x2−9x2=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=0 Численное решение x1=0 x2=9.85841562554⋅10−7 x3=−8.43656474654⋅10−7
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^2/(x^2 - 9). −9+0202 Результат: f(0)=0 Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная −(x2−9)22x3+x2−92x=0 Решаем это уравнение Корни этого ур-ния x1=0 Зн. экстремумы в точках:
(0, 0)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумов у функции нет Максимумы функции в точках: x1=0 Убывает на промежутках
(-oo, 0]
Возрастает на промежутках
[0, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная x2−91((x2−9)28x4−x2−910x2+2)=0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Вертикальные асимптоты
Есть: x1=−3 x2=3
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(x2−9x2)=1 Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=1 x→∞lim(x2−9x2)=1 Возьмём предел значит, уравнение горизонтальной асимптоты справа: y=1
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^2/(x^2 - 9), делённой на x при x->+oo и x ->-oo x→−∞lim(x2−9x)=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(x2−9x)=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x2−9x2=x2−9x2 - Да x2−9x2=−x2−9x2 - Нет значит, функция является чётной