График функции y = sqrt(2*x)-1

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
         _____    
f(x) = \/ 2*x  - 1
f(x)=2x1f{\left (x \right )} = \sqrt{2 x} - 1
График функции
02468-8-6-4-2-10105-5
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
2x1=0\sqrt{2 x} - 1 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=12x_{1} = \frac{1}{2}
Численное решение
x1=0.5x_{1} = 0.5
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в sqrt(2*x) - 1.
1+02-1 + \sqrt{0 \cdot 2}
Результат:
f(0)=1f{\left (0 \right )} = -1
Точка:
(0, -1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
2x2x=0\frac{\sqrt{2} \sqrt{x}}{2 x} = 0
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
24x32=0- \frac{\sqrt{2}}{4 x^{\frac{3}{2}}} = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(2x1)=i\lim_{x \to -\infty}\left(\sqrt{2 x} - 1\right) = \infty i
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=iy = \infty i
limx(2x1)=\lim_{x \to \infty}\left(\sqrt{2 x} - 1\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(2*x) - 1, делённой на x при x->+oo и x ->-oo
limx(1x(2x1))=0\lim_{x \to -\infty}\left(\frac{1}{x} \left(\sqrt{2 x} - 1\right)\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(1x(2x1))=0\lim_{x \to \infty}\left(\frac{1}{x} \left(\sqrt{2 x} - 1\right)\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
2x1=2x1\sqrt{2 x} - 1 = \sqrt{2} \sqrt{- x} - 1
- Нет
2x1=2x+1\sqrt{2 x} - 1 = - \sqrt{2} \sqrt{- x} + 1
- Нет
значит, функция
не является
ни чётной ни нечётной