График функции пересекает ось X при f = 0 значит надо решить уравнение: 2x−1=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=21 Численное решение x1=0.5
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в sqrt(2*x) - 1. −1+0⋅2 Результат: f(0)=−1 Точка:
(0, -1)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= Первая производная 2x2x=0 Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= Вторая производная −4x232=0 Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(2x−1)=∞i Возьмём предел значит, уравнение горизонтальной асимптоты слева: y=∞i x→∞lim(2x−1)=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(2*x) - 1, делённой на x при x->+oo и x ->-oo x→−∞lim(x1(2x−1))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа x→∞lim(x1(2x−1))=0 Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: 2x−1=2−x−1 - Нет 2x−1=−2−x+1 - Нет значит, функция не является ни чётной ни нечётной