График функции y = 2/(x-1)^3

Функция f() ?

Примеры

Решение

Вы ввели
[LaTeX]
          2    
f(x) = --------
              3
       (x - 1) 
$$f{\left (x \right )} = \frac{2}{\left(x - 1\right)^{3}}$$
График функции
[LaTeX]
Область определения функции
[LaTeX]
Точки, в которых функция точно неопределена:
$$x_{1} = 1$$
Точки пересечения с осью координат X
[LaTeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{2}{\left(x - 1\right)^{3}} = 0$$
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
[LaTeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 2/(x - 1)^3.
$$\frac{2}{\left(-1\right)^{3}}$$
Результат:
$$f{\left (0 \right )} = -2$$
Точка:
(0, -2)
Экстремумы функции
[LaTeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$- \frac{6}{\left(x - 1\right)^{4}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно экстремумов у функции нет
Точки перегибов
[LaTeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{24}{\left(x - 1\right)^{5}} = 0$$
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
[LaTeX]
Есть:
$$x_{1} = 1$$
Горизонтальные асимптоты
[LaTeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{2}{\left(x - 1\right)^{3}}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{2}{\left(x - 1\right)^{3}}\right) = 0$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = 0$$
Наклонные асимптоты
[LaTeX]
Наклонную асимптоту можно найти, подсчитав предел функции 2/(x - 1)^3, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{2}{x \left(x - 1\right)^{3}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(\frac{2}{x \left(x - 1\right)^{3}}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
[LaTeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{2}{\left(x - 1\right)^{3}} = \frac{2}{\left(- x - 1\right)^{3}}$$
- Нет
$$\frac{2}{\left(x - 1\right)^{3}} = - \frac{2}{\left(- x - 1\right)^{3}}$$
- Нет
значит, функция
не является
ни чётной ни нечётной