График функции y = x^4+2*x^2-3

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        4      2    
f(x) = x  + 2*x  - 3
f(x)=x4+2x23f{\left(x \right)} = x^{4} + 2 x^{2} - 3
График функции
02468-8-6-4-2-101020000-10000
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x4+2x23=0x^{4} + 2 x^{2} - 3 = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=1x_{1} = -1
x2=1x_{2} = 1
Численное решение
x1=1x_{1} = 1
x2=1x_{2} = -1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^4 + 2*x^2 - 1*3.
(1)3+04+202\left(-1\right) 3 + 0^{4} + 2 \cdot 0^{2}
Результат:
f(0)=3f{\left(0 \right)} = -3
Точка:
(0, -3)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
4x3+4x=04 x^{3} + 4 x = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
Зн. экстремумы в точках:
(0, -1*3)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=0x_{1} = 0
Максимумов у функции нет
Убывает на промежутках
[0,)\left[0, \infty\right)
Возрастает на промежутках
(,0]\left(-\infty, 0\right]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
4(3x2+1)=04 \cdot \left(3 x^{2} + 1\right) = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x4+2x23)=\lim_{x \to -\infty}\left(x^{4} + 2 x^{2} - 3\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты слева не существует
limx(x4+2x23)=\lim_{x \to \infty}\left(x^{4} + 2 x^{2} - 3\right) = \infty
Возьмём предел
значит,
горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^4 + 2*x^2 - 1*3, делённой на x при x->+oo и x ->-oo
limx(x4+2x23x)=\lim_{x \to -\infty}\left(\frac{x^{4} + 2 x^{2} - 3}{x}\right) = -\infty
Возьмём предел
значит,
наклонной асимптоты слева не существует
limx(x4+2x23x)=\lim_{x \to \infty}\left(\frac{x^{4} + 2 x^{2} - 3}{x}\right) = \infty
Возьмём предел
значит,
наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x4+2x23=x4+2x23x^{4} + 2 x^{2} - 3 = x^{4} + 2 x^{2} - 3
- Да
x4+2x23=x42x2+3x^{4} + 2 x^{2} - 3 = - x^{4} - 2 x^{2} + 3
- Нет
значит, функция
является
чётной
График
График функции y = x^4+2*x^2-3 /media/krcore-image-pods/hash/xy/8/ea/a0e9fa43416b4a0cc2f668b6bf427.png