График функции y = 1+1/2*cos(x)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
           cos(x)
f(x) = 1 + ------
             2   
f(x)=cos(x)2+1f{\left(x \right)} = \frac{\cos{\left(x \right)}}{2} + 1
График функции
02468-8-6-4-2-101002
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
cos(x)2+1=0\frac{\cos{\left(x \right)}}{2} + 1 = 0
Решаем это уравнение
Решения не найдено,
может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в 1 + cos(x)/2.
cos(0)2+1\frac{\cos{\left(0 \right)}}{2} + 1
Результат:
f(0)=32f{\left(0 \right)} = \frac{3}{2}
Точка:
(0, 3/2)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
первая производная
sin(x)2=0- \frac{\sin{\left(x \right)}}{2} = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
x2=πx_{2} = \pi
Зн. экстремумы в точках:
(0, 3/2)

(pi, 1/2)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x1=πx_{1} = \pi
Максимумы функции в точках:
x1=0x_{1} = 0
Убывает на промежутках
(,0][π,)\left(-\infty, 0\right] \cup \left[\pi, \infty\right)
Возрастает на промежутках
[0,π]\left[0, \pi\right]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
вторая производная
cos(x)2=0- \frac{\cos{\left(x \right)}}{2} = 0
Решаем это уравнение
Корни этого ур-ния
x1=π2x_{1} = \frac{\pi}{2}
x2=3π2x_{2} = \frac{3 \pi}{2}

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[π2,3π2]\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]
Выпуклая на промежутках
(,π2][3π2,)\left(-\infty, \frac{\pi}{2}\right] \cup \left[\frac{3 \pi}{2}, \infty\right)
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(cos(x)2+1)=12,32\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{2} + 1\right) = \left\langle \frac{1}{2}, \frac{3}{2}\right\rangle
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=12,32y = \left\langle \frac{1}{2}, \frac{3}{2}\right\rangle
limx(cos(x)2+1)=12,32\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{2} + 1\right) = \left\langle \frac{1}{2}, \frac{3}{2}\right\rangle
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=12,32y = \left\langle \frac{1}{2}, \frac{3}{2}\right\rangle
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции 1 + cos(x)/2, делённой на x при x->+oo и x ->-oo
limx(cos(x)2+1x)=0\lim_{x \to -\infty}\left(\frac{\frac{\cos{\left(x \right)}}{2} + 1}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(cos(x)2+1x)=0\lim_{x \to \infty}\left(\frac{\frac{\cos{\left(x \right)}}{2} + 1}{x}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
cos(x)2+1=cos(x)2+1\frac{\cos{\left(x \right)}}{2} + 1 = \frac{\cos{\left(x \right)}}{2} + 1
- Да
cos(x)2+1=cos(x)21\frac{\cos{\left(x \right)}}{2} + 1 = - \frac{\cos{\left(x \right)}}{2} - 1
- Нет
значит, функция
является
чётной
График
График функции y = 1+1/2*cos(x) /media/krcore-image-pods/hash/xy/3/03/6ccef55f3bc9530ce5c2f606eb808.png