График функции y = -(3*x^2)/(x^2+3)

Функция f() ?

Примеры

График:

от до

Точки пересечения:

Решение

Вы ввели
[TeX]
[pretty]
[text]
           2 
       -3*x  
f(x) = ------
        2    
       x  + 3
$$f{\left (x \right )} = \frac{-1 \cdot 3 x^{2}}{x^{2} + 3}$$
График функции
Точки пересечения с осью координат X
[TeX]
График функции пересекает ось X при f = 0
значит надо решить уравнение:
$$\frac{-1 \cdot 3 x^{2}}{x^{2} + 3} = 0$$
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
$$x_{1} = 0$$
Численное решение
$$x_{1} = 0$$
Точки пересечения с осью координат Y
[TeX]
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (-3*x^2)/(x^2 + 3).
$$\frac{-1 \cdot 3 \cdot 0^{2}}{0^{2} + 3}$$
Результат:
$$f{\left (0 \right )} = 0$$
Точка:
(0, 0)
Экстремумы функции
[TeX]
Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{6 x^{3}}{\left(x^{2} + 3\right)^{2}} - \frac{6 x}{x^{2} + 3} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 0$$
Зн. экстремумы в точках:
(0, 0)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
$$x_{1} = 0$$
Убывает на промежутках
(-oo, 0]

Возрастает на промежутках
[0, oo)
Точки перегибов
[TeX]
Найдем точки перегибов, для этого надо решить уравнение
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0$$
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )} = $$
Вторая производная
$$\frac{1}{x^{2} + 3} \left(- \frac{24 x^{4}}{\left(x^{2} + 3\right)^{2}} + \frac{30 x^{2}}{x^{2} + 3} - 6\right) = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = -1$$
$$x_{2} = 1$$

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, -1] U [1, oo)

Выпуклая на промежутках
[-1, 1]
Горизонтальные асимптоты
[TeX]
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
$$\lim_{x \to -\infty}\left(\frac{-1 \cdot 3 x^{2}}{x^{2} + 3}\right) = -3$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
$$y = -3$$
$$\lim_{x \to \infty}\left(\frac{-1 \cdot 3 x^{2}}{x^{2} + 3}\right) = -3$$
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
$$y = -3$$
Наклонные асимптоты
[TeX]
Наклонную асимптоту можно найти, подсчитав предел функции (-3*x^2)/(x^2 + 3), делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(- \frac{3 x}{x^{2} + 3}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
$$\lim_{x \to \infty}\left(- \frac{3 x}{x^{2} + 3}\right) = 0$$
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
[TeX]
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
$$\frac{-1 \cdot 3 x^{2}}{x^{2} + 3} = \frac{-1 \cdot 3 x^{2}}{x^{2} + 3}$$
- Да
$$\frac{-1 \cdot 3 x^{2}}{x^{2} + 3} = - \frac{-1 \cdot 3 x^{2}}{x^{2} + 3}$$
- Нет
значит, функция
является
чётной