График функции пересекает ось X при f = 0 значит надо решить уравнение: $$\sqrt{2 x} + 3 = 0$$ Решаем это уравнение Решения не найдено, может быть, что график не пересекает ось X
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в sqrt(2*x) + 3. $$\sqrt{2 \cdot 0} + 3$$ Результат: $$f{\left(0 \right)} = 3$$ Точка:
(0, 3)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение $$\frac{d}{d x} f{\left(x \right)} = 0$$ (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left(x \right)} = $$ первая производная $$\frac{\sqrt{2} \sqrt{x}}{2 x} = 0$$ Решаем это уравнение Решения не найдены, возможно экстремумов у функции нет
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$ (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: $$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$ вторая производная $$- \frac{\sqrt{2}}{4 x^{\frac{3}{2}}} = 0$$ Решаем это уравнение Решения не найдены, возможно перегибов у функции нет
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo $$\lim_{x \to -\infty}\left(\sqrt{2 x} + 3\right) = \infty i$$ Возьмём предел значит, горизонтальной асимптоты слева не существует $$\lim_{x \to \infty}\left(\sqrt{2 x} + 3\right) = \infty$$ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(2*x) + 3, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{\sqrt{2 x} + 3}{x}\right) = 0$$ Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой справа $$\lim_{x \to \infty}\left(\frac{\sqrt{2 x} + 3}{x}\right) = 0$$ Возьмём предел значит, наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: $$\sqrt{2 x} + 3 = \sqrt{2} \sqrt{- x} + 3$$ - Нет $$\sqrt{2 x} + 3 = - \sqrt{2} \sqrt{- x} - 3$$ - Нет значит, функция не является ни чётной ни нечётной