Интеграл e^(5*x+7) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |   5*x + 7   
     |  E        dx
     |             
    /              
    0              
    01e5x+7dx\int_{0}^{1} e^{5 x + 7}\, dx
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть u=5x+7u = 5 x + 7.

        Тогда пусть du=5dxdu = 5 dx и подставим du5\frac{du}{5}:

        eudu\int e^{u}\, du

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          eudu=15eudu\int e^{u}\, du = \frac{1}{5} \int e^{u}\, du

          1. Интеграл от экспоненты есть он же сам.

            eudu=eu\int e^{u}\, du = e^{u}

          Таким образом, результат будет: eu5\frac{e^{u}}{5}

        Если сейчас заменить uu ещё в:

        15e5x+7\frac{1}{5} e^{5 x + 7}

      Метод #2

      1. Перепишите подынтегральное выражение:

        e5x+7=e7e5xe^{5 x + 7} = e^{7} e^{5 x}

      2. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        e7e5xdx=e7e5xdx\int e^{7} e^{5 x}\, dx = e^{7} \int e^{5 x}\, dx

        1. пусть u=5xu = 5 x.

          Тогда пусть du=5dxdu = 5 dx и подставим du5\frac{du}{5}:

          eudu\int e^{u}\, du

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            eudu=15eudu\int e^{u}\, du = \frac{1}{5} \int e^{u}\, du

            1. Интеграл от экспоненты есть он же сам.

              eudu=eu\int e^{u}\, du = e^{u}

            Таким образом, результат будет: eu5\frac{e^{u}}{5}

          Если сейчас заменить uu ещё в:

          e5x5\frac{e^{5 x}}{5}

        Таким образом, результат будет: e75e5x\frac{e^{7}}{5} e^{5 x}

    2. Теперь упростить:

      15e5x+7\frac{1}{5} e^{5 x + 7}

    3. Добавляем постоянную интегрирования:

      15e5x+7+constant\frac{1}{5} e^{5 x + 7}+ \mathrm{constant}


    Ответ:

    15e5x+7+constant\frac{1}{5} e^{5 x + 7}+ \mathrm{constant}

    График
    02468-8-6-4-2-1010010e24
    Ответ [src]
      1                         
      /                         
     |                   7    12
     |   5*x + 7        e    e  
     |  E        dx = - -- + ---
     |                  5     5 
    /                           
    0                           
    E125logEE75logE{{E^{12}}\over{5\,\log E}}-{{E^7}\over{5\,\log E}}
    Численный ответ [src]
    32331.6316521151
    Ответ (Неопределённый) [src]
      /                          
     |                    5*x + 7
     |  5*x + 7          e       
     | E        dx = C + --------
     |                      5    
    /                            
    E5x+75logE{{E^{5\,x+7}}\over{5\,\log E}}