Интеграл 5^(-6*x+3) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |   -6*x + 3   
     |  5         dx
     |              
    /               
    0               
    $$\int_{0}^{1} 5^{- 6 x + 3}\, dx$$
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл экспоненциальной функции равен ему же, деленному на натуральный логарифм основания.

          Таким образом, результат будет:

        Если сейчас заменить ещё в:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл экспоненциальной функции равен ему же, деленному на натуральный логарифм основания.

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                          
      /                          
     |                           
     |   -6*x + 3         2604   
     |  5         dx = ----------
     |                 125*log(5)
    /                            
    0                            
    $${{2604}\over{125\,\log 5}}$$
    Численный ответ [src]
    12.9436493567458
    Ответ (Неопределённый) [src]
      /                            
     |                     -6*x + 3
     |  -6*x + 3          5        
     | 5         dx = C - ---------
     |                     6*log(5)
    /                              
    $$-{{5^{3-6\,x}}\over{6\,\log 5}}$$