Интеграл (sin(5*x))^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |     2        
     |  sin (5*x) dx
     |              
    /               
    0               
    01sin2(5x)dx\int_{0}^{1} \sin^{2}{\left (5 x \right )}\, dx
    Подробное решение
    1. Перепишите подынтегральное выражение:

      sin2(5x)=12cos(10x)+12\sin^{2}{\left (5 x \right )} = - \frac{1}{2} \cos{\left (10 x \right )} + \frac{1}{2}

    2. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        12cos(10x)dx=12cos(10x)dx\int - \frac{1}{2} \cos{\left (10 x \right )}\, dx = - \frac{1}{2} \int \cos{\left (10 x \right )}\, dx

        1. пусть u=10xu = 10 x.

          Тогда пусть du=10dxdu = 10 dx и подставим du10\frac{du}{10}:

          cos(u)du\int \cos{\left (u \right )}\, du

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            cos(u)du=110cos(u)du\int \cos{\left (u \right )}\, du = \frac{1}{10} \int \cos{\left (u \right )}\, du

            1. Интеграл от косинуса есть синус:

              cos(u)du=sin(u)\int \cos{\left (u \right )}\, du = \sin{\left (u \right )}

            Таким образом, результат будет: 110sin(u)\frac{1}{10} \sin{\left (u \right )}

          Если сейчас заменить uu ещё в:

          110sin(10x)\frac{1}{10} \sin{\left (10 x \right )}

        Таким образом, результат будет: 120sin(10x)- \frac{1}{20} \sin{\left (10 x \right )}

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

      Результат есть: x2120sin(10x)\frac{x}{2} - \frac{1}{20} \sin{\left (10 x \right )}

    3. Добавляем постоянную интегрирования:

      x2120sin(10x)+constant\frac{x}{2} - \frac{1}{20} \sin{\left (10 x \right )}+ \mathrm{constant}


    Ответ:

    x2120sin(10x)+constant\frac{x}{2} - \frac{1}{20} \sin{\left (10 x \right )}+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-1010
    Ответ [src]
      1                                 
      /                                 
     |                                  
     |     2           1   cos(5)*sin(5)
     |  sin (5*x) dx = - - -------------
     |                 2         10     
    /                                   
    0                                   
    sin101020-{{\sin 10-10}\over{20}}
    Численный ответ [src]
    0.527201055544468
    Ответ (Неопределённый) [src]
      /                                
     |                                 
     |    2               x   sin(10*x)
     | sin (5*x) dx = C + - - ---------
     |                    2       20   
    /                                  
    5xsin(10x)210{{5\,x-{{\sin \left(10\,x\right)}\over{2}}}\over{10}}