Интеграл x/(1-x^3) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1          
      /          
     |           
     |    x      
     |  ------ dx
     |       3   
     |  1 - x    
     |           
    /            
    0            
    $$\int_{0}^{1} \frac{x}{- x^{3} + 1}\, dx$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Не могу найти шаги в поиске этот интеграла.

            Но интеграл

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Не могу найти шаги в поиске этот интеграла.

              Но интеграл

            Таким образом, результат будет:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл есть .

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      Результат есть:

    3. Теперь упростить:

    4. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                      
      /                      
     |                       
     |    x              pi*I
     |  ------ dx = oo + ----
     |       3            3  
     |  1 - x                
     |                       
    /                        
    0                        
    $${\it \%a}$$
    Численный ответ [src]
    14.5777877494774