Интеграл (x^2-x)/2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1          
      /          
     |           
     |   2       
     |  x  - x   
     |  ------ dx
     |    2      
     |           
    /            
    0            
    $$\int_{0}^{1} \frac{1}{2} \left(x^{2} - x\right)\, dx$$
    Подробное решение
    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      1. Интегрируем почленно:

        1. Интеграл есть :

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл есть :

          Таким образом, результат будет:

        Результат есть:

      Таким образом, результат будет:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                  
      /                  
     |                   
     |   2               
     |  x  - x           
     |  ------ dx = -1/12
     |    2              
     |                   
    /                    
    0                    
    $$-{{1}\over{12}}$$
    Численный ответ [src]
    -0.0833333333333333
    Ответ (Неопределённый) [src]
      /                       
     |                        
     |  2               2    3
     | x  - x          x    x 
     | ------ dx = C - -- + --
     |   2             4    6 
     |                        
    /                         
    $${{{{x^3}\over{3}}-{{x^2}\over{2}}}\over{2}}$$