↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример
1 / | | / 2 \ | \x + x - 1/ dx | / 0
Интегрируем почленно:
Интеграл xnx^{n}xn есть xn+1n+1\frac{x^{n + 1}}{n + 1}n+1xn+1 когда n≠−1n \neq -1n=−1:
∫x2 dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}∫x2dx=3x3
∫x dx=x22\int x\, dx = \frac{x^{2}}{2}∫xdx=2x2
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
∫((−1)1) dx=−x\int \left(\left(-1\right) 1\right)\, dx = - x∫((−1)1)dx=−x
Результат есть: x33+x22−x\frac{x^{3}}{3} + \frac{x^{2}}{2} - x3x3+2x2−x
Теперь упростить:
x(x23+x2−1)x \left(\frac{x^{2}}{3} + \frac{x}{2} - 1\right)x(3x2+2x−1)
Добавляем постоянную интегрирования:
x(x23+x2−1)+constantx \left(\frac{x^{2}}{3} + \frac{x}{2} - 1\right)+ \mathrm{constant}x(3x2+2x−1)+constant
Ответ:
-1/6
=
-0.166666666666667
/ | 2 3 | / 2 \ x x | \x + x - 1/ dx = C + -- - x + -- | 2 3 /