Интеграл e^(-x) (dx)

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

    Решение

    Вы ввели
    [LaTeX]
      1       
      /       
     |        
     |   -x   
     |  E   dx
     |        
    /         
    0         
    $$\int_{0}^{1} e^{- x}\, dx$$
    Подробное решение
    [LaTeX]
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл от экспоненты есть он же сам.

          Таким образом, результат будет:

        Если сейчас заменить ещё в:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. пусть .

        Тогда пусть и подставим :

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл от экспоненты есть он же сам.

          Таким образом, результат будет:

        Если сейчас заменить ещё в:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    [LaTeX]
    Ответ
    [LaTeX]
      1                 
      /                 
     |                  
     |   -x           -1
     |  E   dx = 1 - e  
     |                  
    /                   
    0                   
    $${{1}\over{\log E}}-{{1}\over{E\,\log E}}$$
    Численный ответ
    [LaTeX]
    0.632120558828558
    Ответ (Неопределённый)
    [LaTeX]
      /                
     |                 
     |  -x           -x
     | E   dx = C - e  
     |                 
    /                  
    $$-{{1}\over{E^{x}\,\log E}}$$