Интеграл sin(x)^(2)+cos(x)^(2) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                       
      /                       
     |                        
     |  /   2         2   \   
     |  \sin (x) + cos (x)/ dx
     |                        
    /                         
    0                         
    01sin2(x)+cos2(x)dx\int_{0}^{1} \sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Перепишите подынтегральное выражение:

        sin2(x)=12cos(2x)+12\sin^{2}{\left (x \right )} = - \frac{1}{2} \cos{\left (2 x \right )} + \frac{1}{2}

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          12cos(2x)dx=12cos(2x)dx\int - \frac{1}{2} \cos{\left (2 x \right )}\, dx = - \frac{1}{2} \int \cos{\left (2 x \right )}\, dx

          1. пусть u=2xu = 2 x.

            Тогда пусть du=2dxdu = 2 dx и подставим du2\frac{du}{2}:

            cos(u)du\int \cos{\left (u \right )}\, du

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              cos(u)du=12cos(u)du\int \cos{\left (u \right )}\, du = \frac{1}{2} \int \cos{\left (u \right )}\, du

              1. Интеграл от косинуса есть синус:

                cos(u)du=sin(u)\int \cos{\left (u \right )}\, du = \sin{\left (u \right )}

              Таким образом, результат будет: 12sin(u)\frac{1}{2} \sin{\left (u \right )}

            Если сейчас заменить uu ещё в:

            12sin(2x)\frac{1}{2} \sin{\left (2 x \right )}

          Таким образом, результат будет: 14sin(2x)- \frac{1}{4} \sin{\left (2 x \right )}

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        Результат есть: x214sin(2x)\frac{x}{2} - \frac{1}{4} \sin{\left (2 x \right )}

      1. Перепишите подынтегральное выражение:

        cos2(x)=12cos(2x)+12\cos^{2}{\left (x \right )} = \frac{1}{2} \cos{\left (2 x \right )} + \frac{1}{2}

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          12cos(2x)dx=12cos(2x)dx\int \frac{1}{2} \cos{\left (2 x \right )}\, dx = \frac{1}{2} \int \cos{\left (2 x \right )}\, dx

          1. пусть u=2xu = 2 x.

            Тогда пусть du=2dxdu = 2 dx и подставим du2\frac{du}{2}:

            cos(u)du\int \cos{\left (u \right )}\, du

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              cos(u)du=12cos(u)du\int \cos{\left (u \right )}\, du = \frac{1}{2} \int \cos{\left (u \right )}\, du

              1. Интеграл от косинуса есть синус:

                cos(u)du=sin(u)\int \cos{\left (u \right )}\, du = \sin{\left (u \right )}

              Таким образом, результат будет: 12sin(u)\frac{1}{2} \sin{\left (u \right )}

            Если сейчас заменить uu ещё в:

            12sin(2x)\frac{1}{2} \sin{\left (2 x \right )}

          Таким образом, результат будет: 14sin(2x)\frac{1}{4} \sin{\left (2 x \right )}

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        Результат есть: x2+14sin(2x)\frac{x}{2} + \frac{1}{4} \sin{\left (2 x \right )}

      Результат есть: xx

    2. Добавляем постоянную интегрирования:

      x+constantx+ \mathrm{constant}


    Ответ:

    x+constantx+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-2020
    Ответ [src]
      1                           
      /                           
     |                            
     |  /   2         2   \       
     |  \sin (x) + cos (x)/ dx = 1
     |                            
    /                             
    0                             
    11
    Численный ответ [src]
    1.0
    Ответ (Неопределённый) [src]
      /                              
     |                               
     | /   2         2   \           
     | \sin (x) + cos (x)/ dx = C + x
     |                               
    /                                
    sin(2x)2+x2+xsin(2x)22{{{{\sin \left(2\,x\right)}\over{2}}+x}\over{2}}+{{x-{{\sin \left(2 \,x\right)}\over{2}}}\over{2}}