∫ Найти интеграл от y = f(x) = 2^8*sin(x)^(8) dx (2 в степени 8 умножить на синус от (х) в степени (8)) - с подробным решением онлайн [Есть ОТВЕТ!]

Интеграл 2^8*sin(x)^(8) (dx)

Учитель очень удивится увидев твоё верное решение😉

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Ввести:

{ кусочно-заданную функцию можно здесь.

    Решение

    Вы ввели [src]
      1               
      /               
     |                
     |         8      
     |  256*sin (x) dx
     |                
    /                 
    0                 
    $$\int_{0}^{1} 256 \sin^{8}{\left (x \right )}\, dx$$
    Подробное решение
    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      1. Перепишите подынтегральное выражение:

      2. Перепишите подынтегральное выражение:

      3. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. Перепишите подынтегральное выражение:

          3. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Перепишите подынтегральное выражение:

              2. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                      1. Интеграл от косинуса есть синус:

                      Таким образом, результат будет:

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Результат есть:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. Есть несколько способов вычислить этот интеграл.

            Метод #1

            1. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Метод #2

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл есть :

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Результат есть:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Результат есть:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

      Таким образом, результат будет:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                                                                                                     
      /                                                                                                     
     |                                                                      3                    5          
     |         8                                       7             140*sin (1)*cos(1)   112*sin (1)*cos(1)
     |  256*sin (x) dx = 70 - 70*cos(1)*sin(1) - 32*sin (1)*cos(1) - ------------------ - ------------------
     |                                                                       3                    3         
    /                                                                                                       
    0                                                                                                       
    $${{3\,\sin 8+168\,\sin 4+128\,\sin ^32-768\,\sin 2+840}\over{12}}$$
    Численный ответ [src]
    9.47655672030381
    Ответ (Неопределённый) [src]
      /                                                                               
     |                                                                          3     
     |        8                                                sin(8*x)   32*sin (2*x)
     | 256*sin (x) dx = C - 64*sin(2*x) + 14*sin(4*x) + 70*x + -------- + ------------
     |                                                            4            3      
    /                                                                                 
    $$128\,\left({{{{{{\sin \left(8\,x\right)}\over{2}}+4\,x}\over{8}}+{{ \sin \left(4\,x\right)}\over{2}}+x}\over{32}}+{{3\,\left({{\sin \left(4\,x\right)}\over{2}}+2\,x\right)}\over{16}}-{{\sin \left(2\,x \right)-{{\sin ^3\left(2\,x\right)}\over{3}}}\over{4}}-{{\sin \left( 2\,x\right)}\over{4}}+{{x}\over{8}}\right)$$
    ×

    Где учитесь?

    Для правильного составления решения, укажите: